Table 1. | Expanding the olfactory code by in silico decoding of odor-receptor chemical space

Open accessCopyright infoDownload PDFDownload figuresRelated content

Expanding the olfactory code by in silico decoding of odor-receptor chemical space

Table 1.

Affiliation details

University of California, Riverside, United States
Table 1.

Optimized molecular descriptor set compositions

DOI: http://dx.doi.org/10.7554/eLife.01120.006

Descriptor class type counts for all Ors
 GETAWAY descriptors75
 3D-MoRSE descriptors66
 2D autocorrelations44
 Edge adjacency indices44
 2D binary fingerprints44
 Functional group counts43
 Atom-centred fragments37
 WHIM descriptors36
 Topological charge indices24
 Atomtypes (Cerius2)23
 Burden eigenvalues23
 Molecular properties23
 Topological descriptors22
 Geometrical descriptors18
 2D frequency fingerprints11
 RDF descriptors8
 Walk and path counts6
 Connectivity indices5
 Information indices5
 Topological (Cerius2)4
 Constitutional descriptors3
 Structural (Cerius2)2
 Randic molecular profiles2
Optimized descriptor analysis
 Average descriptor overlap between Ors13%
 Average number of descriptors per Or29.9
 Average number 3D descriptors per Or10.8
 Average number 2D descriptors per Or12.2
 Average number 1D descriptors per Or6.6
 Average number 0D descriptors per Or0.3
Descriptor dimensionality counts
 Number three dimensional descriptors205
 Number two dimensional descriptors232
 Number one dimensional descriptors126
 Number zero dimensional descriptors5
Descriptor Origin
 Number Dragon descriptors539
 Number Cerius descriptors29
  • Breakdowns of the molecular descriptor class type, dimensionality, origin, and average overlap for all optimized molecular descriptors selected for each Or.