Figure 3. | A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control

Open accessCopyright infoDownload PDF

A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control

Figure 3.

Affiliation details

École Polytechnique Fédérale de Lausanne, Switzerland; University Hospital and University of Lausanne, Switzerland; Eötvös Loránd University and the Hungarian Academy of Sciences, Hungary; Swiss Institute of Bioinformatics, Switzerland; Microsoft Research, United States; BC Centre for Excellence in HIV/AIDS, Canada; Simon Fraser University, Canada; Murdoch University, Australia; Vanderbilt University Medical Center, United States; Universitat Autònoma de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain; Instituto de Salud Carlos III, Spain; University of Bern & Inselspital, Switzerland; University Hospital and University of Zürich, Switzerland; Regional Hospital of Lugano, Switzerland; Cantonal Hospital, Switzerland; University of Basel, Switzerland; Geneva University Hospitals, Switzerland; St. Petersburg State University, Russia; Massachusetts General Hospital, United States; University of British Columbia, Canada
Figure 3.
Download figureOpen in new tabFigure 3. Association of HIV-1 amino acid variants with plasma viral load.

(A) Changes in VL (slope coefficients from the univariate regression model and standard error, log10 copies/ml) for the 48 HIV-1 amino acids that are associated with host SNPs in the genome-to-genome analysis. (B) rs2395029, a marker of HLA-B*57:01 is associated with a 0.38 log10 copies/ml lower VL (black bar) in comparison to the population mean. Gray bars represent changes in VL for amino acid variants associated with rs2395029 (p<0.001). In case of multiallelic positions, the change in VL is shown for all minor amino acids combined vs the major amino acid (e.g., GAG147 not I).

DOI: http://dx.doi.org/10.7554/eLife.01123.006