Developmental Biology: Shaping the sound of voice

The proper development of the vocal cords requires embryos to contain a certain number of progenitor cells, and mutations that lead to an overflow of cells can cause malformations of the voice box.
  1. Ralph Marcucio  Is a corresponding author
  1. University of California San Francisco, United States

Acoustic communication is used by many different species. Animals employ sound to attract mates, to sense their environment, to send messages, to convey danger or just to entertain, while insects like ants and crickets also use sound for communication. There is even evidence that some plants use ‘acoustic reflectors’ to attract bats to pollinate, fertilize and distribute seeds (Schoner et al., 2016).

Vertebrates have many different ways to produce sound. Birds sing via a syrinx, for example, while dolphins emit ultrasonic waves by passing air through a structure called the dorsal bursa. Other mammals rely on a complex structure called the larynx that houses the vocal cords and is made of cartilage, muscle, ligament and connective tissue. As the air flows through the larynx, the shape and tension of the vocal cords create sounds through vibration, while the cartilage manipulates the pitch.

Although the biology of language and speech has been studied for decades, our understanding of how the vocal organs develop is still patchy, and most of what we know about the development of the larynx is based on research in bird embryos (Evans and Noden, 2006). As an embryo develops, the cells that will become the vocal organs undergo a series of transformations that are orchestrated by various signaling factors and pathways. Mutations in these pathways can cause structural birth defects, and such mutations may also lead to characteristic vocal traits in humans. For instance, patients with Pallister-Hall Syndrome (Hall et al., 1980), which arises from mutations in a Hedgehog signaling protein called Gli3, are said to have ‘growling’ voices.

Hedgehog signaling occurs within cellular structures called cilia, and patients with mutations in ciliary proteins also suffer from defects in their voice (Beales et al., 1999). It is also known that a ciliary protein called Fuz is required for Gli3 processing (Adler and Wallingford, 2017) but, until recently, it was not known if there was a mechanistic link between disorders affecting the cilia and the development of the larynx. Now, in eLife, John Wallingford and colleagues – including Jacqueline Tabler and Maggie Rigney of the University of Texas at Austin as joint first authors – report that Fuz is essential for the development of the larynx (Tabler et al., 2017).

To better understand how molecular signals and proteins regulate the development of the larynx, Tabler et al. used mutant mice that lacked either Gli3 or Fuz. In both groups of mice, the formation of the larynx was disrupted, but more severely in mice without Fuz. Tabler et al. then looked more closely at proteins of the Hedgehog signaling pathway, which are affected in Fuz mutants. In particular, they focused on a specific type of mutation in the gene for Gli3 that is known to cause birth defects in humans. Indeed, the larynx did not develop properly in these mice because of a build-up of connective tissue near the vocal cords, which affected their ability to make a sound.

In addition, an acoustic map comparing the sounds from wild type and Gli3 mutant mice showed that sound production was negatively affected in the mutants. It appears that changes to the sounds produced are not caused by changes in brain activity, but by physical changes in the larynx itself.

Lying at the heart of the complex process of laryngeal formation and malformation in these mutants is an incredibly simple explanation. Mutant embryos had more progenitor cells – the cells that are destined to build the larynx but have not fully developed yet. Tabler et al. suggest that regulation of the number of progenitor cells could have a role in many disorders affecting the cilia. This is not surprising as the size of the pool of progenitor cells is known to have an important role in other diseases (Jones et al., 2008) and also in evolution (Fish et al., 2014). Some of the observed changes have also been found in other animals, suggesting a conceptual framework for exploring the molecular and developmental basis of evolution that may contribute to diversity of the vocal repertoire among vertebrates.

References

    1. Beales PL
    2. Elcioglu N
    3. Woolf AS
    4. Parker D
    5. Flinter FA
    (1999)
    New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey
    Journal of Medical Genetics 36:437–446.

Article and author information

Author details

  1. Ralph Marcucio

    Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, United States
    For correspondence
    ralph.marcucio@ucsf.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0537-818X

Publication history

  1. Version of Record published: March 20, 2017 (version 1)

Copyright

© 2017, Marcucio

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,049
    views
  • 94
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ralph Marcucio
(2017)
Developmental Biology: Shaping the sound of voice
eLife 6:e25858.
https://doi.org/10.7554/eLife.25858
  1. Further reading

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.