Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock

  1. M. Usman Anwer
  2. Eleni Boikoglou
  3. Eva Herrero
  4. Marc Hallstein
  5. Amanda M Davis
  6. Geo Velikkakam James
  7. Ferenc Nagy
  8. Seth J Davis  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. Cold Spring Harbour Laboratory, Germany
  3. MRC National Institute for Medical Research, United Kingdom
  4. Biological Research Centre of the Hungarian Academy of Sciences, Hungary

Abstract

Natural selection of variants within the Arabidopsis thaliana circadian clock can be attributed to adaptation to varying environments. To define a basis for such variation, we examined clock speed in a reporter-modified Bay-0 x Shakdara recombinant inbred line and localized heritable variation. Extensive variation led us to identify EARLY FLOWERING3 (ELF3) as a major quantitative trait locus (QTL). The causal nucleotide polymorphism caused a short-period phenotype under light and severely dampened rhythm generation in darkness, and entrainment alterations resulted. We found that ELF3-Sha protein failed to properly localize to the nucleus, and its ability to accumulate in darkness was compromised. Evidence was provided that the ELF3-Sha allele originated in Central Asia. Collectively we showed that ELF3 protein plays a vital role in defining its light-repressor action in the circadian clock and that its functional abilities are largely dependent on its cellular localization.

Article and author information

Author details

  1. M. Usman Anwer

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Eleni Boikoglou

    Cold Spring Harbour Laboratory, Laurel Hollow, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Eva Herrero

    MRC National Institute for Medical Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Hallstein

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Amanda M Davis

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Geo Velikkakam James

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ferenc Nagy

    Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth J Davis

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    For correspondence
    seth.davis@york.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Todd C Mockler, Donald Danforth Plant Science Center, United States

Version history

  1. Received: January 3, 2014
  2. Accepted: May 22, 2014
  3. Accepted Manuscript published: May 27, 2014 (version 1)
  4. Version of Record published: July 1, 2014 (version 2)

Copyright

© 2014, Anwer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,284
    views
  • 303
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. M. Usman Anwer
  2. Eleni Boikoglou
  3. Eva Herrero
  4. Marc Hallstein
  5. Amanda M Davis
  6. Geo Velikkakam James
  7. Ferenc Nagy
  8. Seth J Davis
(2014)
Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock
eLife 3:e02206.
https://doi.org/10.7554/eLife.02206

Share this article

https://doi.org/10.7554/eLife.02206

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.