Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination

  1. Edward Stanek
  2. Steven Cheng
  3. Jun Takatoh
  4. Bao-Xia Han
  5. Fan Wang  Is a corresponding author
  1. Duke University Medical Centre, United States

Abstract

Feeding behaviors require intricately coordinated activation among the muscles of the jaw, tongue, and face, but the neural anatomical substrates underlying such coordination remain unclear. Here we investigate whether the premotor circuitry of jaw and tongue motoneurons contain elements for coordination. Using a modified monosynaptic rabies virus based transsynaptic tracing strategy, we systematically mapped premotor neurons for the jaw-closing masseter muscle and the tongue-protruding genioglossus muscle. The maps revealed that the two groups of premotor neurons are distributed in regions implicated in rhythmogenesis, descending motor control, and sensory feedback. Importantly, we discovered several premotor connection configurations that are ideally suited for coordinating bilaterally symmetric jaw movements, and for enabling co-activation of specific jaw, tongue, and facial muscles. Our findings suggest that shared premotor neurons that form specific multi-target connections with selected motoneurons are a simple and general solution to the problem of orofacial coordination.

Article and author information

Author details

  1. Edward Stanek

    Duke University Medical Centre, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven Cheng

    Duke University Medical Centre, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun Takatoh

    Duke University Medical Centre, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bao-Xia Han

    Duke University Medical Centre, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fan Wang

    Duke University Medical Centre, Durham, United States
    For correspondence
    fan.wang@duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Peggy Mason, University of Chicago, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A220-12-08) of Duke University. Duke University is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

Version history

  1. Received: February 11, 2014
  2. Accepted: April 24, 2014
  3. Accepted Manuscript published: April 30, 2014 (version 1)
  4. Version of Record published: June 3, 2014 (version 2)

Copyright

© 2014, Stanek et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,301
    views
  • 823
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Stanek
  2. Steven Cheng
  3. Jun Takatoh
  4. Bao-Xia Han
  5. Fan Wang
(2014)
Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination
eLife 3:e02511.
https://doi.org/10.7554/eLife.02511

Share this article

https://doi.org/10.7554/eLife.02511

Further reading

  1. Why don't we bite our tongues when we chew?

    1. Neuroscience
    Hao Li, Jingyu Feng ... Jufang He
    Research Article

    Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck−/−) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck−/− mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck−/− mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.