Cyclin D activates the Rb tumor suppressor by mono-phosphorylation

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy  Is a corresponding author
  1. University of California, San Diego School of Medicine, United States
  2. Sanofi Oncology, United States
  3. Harvard Medical School, United States

Abstract

The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase.

Article and author information

Author details

  1. Anil M Narasimha

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kaulich

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gary S Shapiro

    Sanofi Oncology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoon J Choi

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Piotr Sicinski

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven F Dowdy

    University of California, San Diego School of Medicine, La Jolla, United States
    For correspondence
    sdowdy@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roger Davis, University of Massachusetts Medical School, United States

Version history

  1. Received: March 23, 2014
  2. Accepted: May 22, 2014
  3. Accepted Manuscript published: May 29, 2014 (version 1)
  4. Version of Record published: July 1, 2014 (version 2)

Copyright

© 2014, Narasimha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,028
    views
  • 2,138
    downloads
  • 296
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy
(2014)
Cyclin D activates the Rb tumor suppressor by mono-phosphorylation
eLife 3:e02872.
https://doi.org/10.7554/eLife.02872

Share this article

https://doi.org/10.7554/eLife.02872

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.