TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export

  1. António J M Santos
  2. Ishier Raote
  3. Margherita Scarpa
  4. Nathalie Brouwers
  5. Vivek Malhotra  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain

Abstract

Previously we showed that membrane fusion is required for TANGO1-dependent export of procollagen VII from the endoplasmic reticulum (ER) (Nogueira et al., 2014). Along with the t-SNARE Syntaxin 18, we now reveal the complete complement of SNAREs required in this process, t-SNAREs BNIP1 and USE1, and v-SNARE YKT6. TANGO1 recruits YKT6-containing ER Golgi Intermediate Compartment (ERGIC) membranes to procollagen VII-enriched patches on the ER. Moreover residues 1214-1396, that include the first coiled coil of TANGO1, specifically recruit ERGIC membranes even when targeted to mitochondria. TANGO1 is thus pivotal in concentrating procollagen VII in the lumen and recruiting ERGIC membranes on the cytoplasmic surface of the ER. Our data reveal that growth of a mega transport carrier for collagen export from the ER is not by acquisition of a larger patch of ER membrane, but instead by addition of ERGIC membranes to procollagen-enriched domains of the ER by a TANGO-mediated process.

Article and author information

Author details

  1. António J M Santos

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  2. Ishier Raote

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Margherita Scarpa

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Nathalie Brouwers

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    No competing interests declared.
  5. Vivek Malhotra

    Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    vivek.malhotra@crg.eu
    Competing interests
    Vivek Malhotra, Senior editor, eLife.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Version history

  1. Received: August 20, 2015
  2. Accepted: November 13, 2015
  3. Accepted Manuscript published: November 14, 2015 (version 1)
  4. Version of Record published: December 31, 2015 (version 2)

Copyright

© 2015, Santos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,653
    views
  • 920
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. António J M Santos
  2. Ishier Raote
  3. Margherita Scarpa
  4. Nathalie Brouwers
  5. Vivek Malhotra
(2015)
TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export
eLife 4:e10982.
https://doi.org/10.7554/eLife.10982

Share this article

https://doi.org/10.7554/eLife.10982

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Dimitrios Vismpas, Friedrich Förster
    Insight

    Advanced cryo-EM approaches reveal surprising insights into the molecular structure that allows nascent proteins to be inserted into the membrane of the endoplasmic reticulum.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.