Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1

  1. Xiaofei Jia
  2. Erin Weber
  3. Andrey Tokarev
  4. Mary Lewinski
  5. Maryan Rizk
  6. Marissa Suarez
  7. John Guatelli
  8. Yong Xiong  Is a corresponding author
  1. Yale University, United States
  2. University of California San Diego, United States

Abstract

BST2/tetherin, an antiviral restriction factor, inhibits the release of enveloped viruses from the cell surface. Human immunodeficiency virus-1 (HIV-1) antagonizes BST2 through viral protein u (Vpu), which downregulates BST2 from the cell surface. We report the crystal structure of a protein complex containing Vpu and BST2 cytoplasmic domains and the core of the clathrin adaptor protein complex 1 (AP1). This, together with our biochemical and functional validations, reveals how Vpu hijacks the AP1-dependent membrane trafficking pathways to mistraffick BST2. Vpu mimics a canonical acidic dileucine-sorting motif to bind AP1 in the cytosol, while simultaneously interacting with BST2 in the membrane. These interactions enable Vpu to build on an intrinsic interaction between BST2 and AP1, presumably causing the observed retention of BST2 in juxtanuclear endosomes and stimulating its degradation in lysosomes. The ability of Vpu to hijack AP-dependent trafficking pathways suggests a potential common theme for Vpu-mediated downregulation of host proteins.

Article and author information

Author details

  1. Xiaofei Jia

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Weber

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey Tokarev

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mary Lewinski

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maryan Rizk

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marissa Suarez

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John Guatelli

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong Xiong

    Yale University, New Haven, United States
    For correspondence
    yong.xiong@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Wesley Sundquist, University of Utah, United States

Version history

  1. Received: January 21, 2014
  2. Accepted: April 6, 2014
  3. Accepted Manuscript published: April 29, 2014 (version 1)
  4. Version of Record published: May 13, 2014 (version 2)

Copyright

© 2014, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,191
    views
  • 200
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaofei Jia
  2. Erin Weber
  3. Andrey Tokarev
  4. Mary Lewinski
  5. Maryan Rizk
  6. Marissa Suarez
  7. John Guatelli
  8. Yong Xiong
(2014)
Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1
eLife 3:e02362.
https://doi.org/10.7554/eLife.02362

Share this article

https://doi.org/10.7554/eLife.02362

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.