Cyclin D activates the Rb tumor suppressor by mono-phosphorylation

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy  Is a corresponding author
  1. University of California, San Diego School of Medicine, United States
  2. Sanofi Oncology, United States
  3. Harvard Medical School, United States

Abstract

The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase.

Article and author information

Author details

  1. Anil M Narasimha

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kaulich

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gary S Shapiro

    Sanofi Oncology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoon J Choi

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Piotr Sicinski

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven F Dowdy

    University of California, San Diego School of Medicine, La Jolla, United States
    For correspondence
    sdowdy@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Roger Davis, University of Massachusetts Medical School, United States

Version history

  1. Received: March 23, 2014
  2. Accepted: May 22, 2014
  3. Accepted Manuscript published: May 29, 2014 (version 1)
  4. Version of Record published: July 1, 2014 (version 2)

Copyright

© 2014, Narasimha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,030
    views
  • 2,149
    downloads
  • 305
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy
(2014)
Cyclin D activates the Rb tumor suppressor by mono-phosphorylation
eLife 3:e02872.
https://doi.org/10.7554/eLife.02872

Share this article

https://doi.org/10.7554/eLife.02872

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.