Insect endosymbiont proliferation is limited by lipid availability

  1. Jeremy K Herren
  2. Juan C Paredes
  3. Fanny Schüpfer
  4. Karim Arafah
  5. Philippe Bulet
  6. Bruno Lemaitre  Is a corresponding author
  1. School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
  2. Platform BioPark Archamps, France

Abstract

Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with Drosophila melanogaster. S. poulsonii resides extracellularly in the hemolymph, where it must acquire metabolites to sustain proliferation. In this study, we find that Spiroplasma proliferation specifically depletes host hemolymph diacylglyceride, the major lipid class transported by the lipoprotein, Lpp. RNAi-mediated knockdown of Lpp expression, which reduces the amount of circulating lipids, inhibits Spiroplasma proliferation demonstrating that bacterial proliferation requires hemolymph-lipids. Altogether, our study shows that an insect endosymbiont acquires specific lipidic metabolites from the transport lipoproteins in the hemolymph of its host. In addition, we show that the proliferation of this endosymbiont is limited by the availability of hemolymph lipids. This feature could limit endosymbiont over-proliferation under conditions of host nutrient limitation as lipid availability is strongly influenced by the nutritional state.

Article and author information

Author details

  1. Jeremy K Herren

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Juan C Paredes

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Fanny Schüpfer

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Karim Arafah

    Platform BioPark Archamps, Saint Julien en Genevois, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Philippe Bulet

    Platform BioPark Archamps, Saint Julien en Genevois, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Lemaitre

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    For correspondence
    bruno.lemaitre@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Version history

  1. Received: March 30, 2014
  2. Accepted: July 14, 2014
  3. Accepted Manuscript published: July 15, 2014 (version 1)
  4. Version of Record published: August 7, 2014 (version 2)

Copyright

© 2014, Herren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,700
    views
  • 427
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy K Herren
  2. Juan C Paredes
  3. Fanny Schüpfer
  4. Karim Arafah
  5. Philippe Bulet
  6. Bruno Lemaitre
(2014)
Insect endosymbiont proliferation is limited by lipid availability
eLife 3:e02964.
https://doi.org/10.7554/eLife.02964

Share this article

https://doi.org/10.7554/eLife.02964

Further reading

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.