Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting

  1. Daniela Pignatta
  2. Robert M Erdmann
  3. Elias Scheer
  4. Colette L Picard
  5. George W Bell
  6. Mary Gehring  Is a corresponding author
  1. Whitehead Institute for Biomedical Research, United States

Abstract

Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds.

Article and author information

Author details

  1. Daniela Pignatta

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert M Erdmann

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elias Scheer

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colette L Picard

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George W Bell

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Gehring

    Whitehead Institute for Biomedical Research, Cambridge, United States
    For correspondence
    mgehring@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: April 25, 2014
  2. Accepted: July 2, 2014
  3. Accepted Manuscript published: July 3, 2014 (version 1)
  4. Version of Record published: August 5, 2014 (version 2)
  5. Version of Record updated: April 7, 2017 (version 3)
  6. Version of Record updated: June 6, 2017 (version 4)

Copyright

© 2014, Pignatta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,028
    views
  • 887
    downloads
  • 156
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniela Pignatta
  2. Robert M Erdmann
  3. Elias Scheer
  4. Colette L Picard
  5. George W Bell
  6. Mary Gehring
(2014)
Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting
eLife 3:e03198.
https://doi.org/10.7554/eLife.03198

Share this article

https://doi.org/10.7554/eLife.03198

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Lauren Kuffler, Daniel A Skelly ... Gregory W Carter
    Research Article

    Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic–epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic–epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.