Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus

  1. Karolina Marciniak  Is a corresponding author
  2. Artin Atabaki
  3. Peter W Dicke
  4. Peter Thier
  1. Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany

Abstract

Primates use gaze cues to follow peer gaze to an object of joint attention. Gaze following of monkeys is largely determined by head or face orientation. We used fMRI in rhesus monkeys to identify brain regions underlying head gaze following and to assess their relationship to the 'face patch' system, the latter being the likely source of information on face orientation. We trained monkeys to locate targets by either following head gaze or using a learned association of face identity with the same targets. Head gaze following activated a distinct region in the posterior STS, close to-albeit not overlapping with-the medial face patch delineated by passive viewing of faces. This 'gaze following patch' may be the substrate of the geometrical calculations needed to translate information on head orientation from the face patches into precise shifts of attention, taking the spatial relationship of the two interacting agents into account.

Article and author information

Author details

  1. Karolina Marciniak

    Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
    For correspondence
    marciniak.kar@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Artin Atabaki

    Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter W Dicke

    Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Thier

    Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ranulfo Romo, Universidad Nacional Autonoma de Mexico, Mexico

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the guidelines of the German law regulating the usage of experimental animals and the protocols approved by the local institution in charge of experiments using animals (Regierungspraesidium Tuebingen, Abteilung Tierschutz, permit-number N1/08). All surgery was performed under combination anesthesia involving isoflurane and remifentanyl and every effort was made to minimize discomfort and suffering.

Version history

  1. Received: April 29, 2014
  2. Accepted: July 11, 2014
  3. Accepted Manuscript published: July 14, 2014 (version 1)
  4. Version of Record published: July 31, 2014 (version 2)

Copyright

© 2014, Marciniak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,764
    views
  • 923
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karolina Marciniak
  2. Artin Atabaki
  3. Peter W Dicke
  4. Peter Thier
(2014)
Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus
eLife 3:e03222.
https://doi.org/10.7554/eLife.03222

Share this article

https://doi.org/10.7554/eLife.03222

Further reading

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.

    1. Neuroscience
    Baiwei Liu, Zampeta-Sofia Alexopoulou, Freek van Ede
    Research Article

    Working memory enables us to bridge past sensory information to upcoming future behaviour. Accordingly, by its very nature, working memory is concerned with two components: the past and the future. Yet, in conventional laboratory tasks, these two components are often conflated, such as when sensory information in working memory is encoded and tested at the same location. We developed a task in which we dissociated the past (encoded location) and future (to-be-tested location) attributes of visual contents in working memory. This enabled us to independently track the utilisation of past and future memory attributes through gaze, as observed during mnemonic selection. Our results reveal the joint consideration of past and future locations. This was prevalent even at the single-trial level of individual saccades that were jointly biased to the past and future. This uncovers the rich nature of working memory representations, whereby both past and future memory attributes are retained and can be accessed together when memory contents become relevant for behaviour.