A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong  Is a corresponding author
  1. California State University, Northridge, United States
  2. University of Utah, United States
  3. Max Planck Institute for Biology of Ageing, Germany
  4. Max-Planck Institute for Developmental Biology, Germany

Abstract

Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulate insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction toward the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggests that the beetle host pheromone may be a species-specific volatile synomone that coevolved with necromeny.

Article and author information

Author details

  1. Jessica K Cinkornpumin

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dona R Wisidagama

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Rapoport

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James L Go

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Dieterich

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyue Wang

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf J Sommer

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ray L Hong

    California State University, Northridge, Northridge, United States
    For correspondence
    ray.hong@csun.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Oliver Hobert, Columbia University, United States

Version history

  1. Received: May 4, 2014
  2. Accepted: October 14, 2014
  3. Accepted Manuscript published: October 15, 2014 (version 1)
  4. Version of Record published: November 25, 2014 (version 2)

Copyright

© 2014, Cinkornpumin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,111
    views
  • 187
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong
(2014)
A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus
eLife 3:e03229.
https://doi.org/10.7554/eLife.03229

Share this article

https://doi.org/10.7554/eLife.03229

Further reading

  1. A beetle pheromone that lures nematode worms to an insect host can also stop their development or even kill them outright.

    1. Developmental Biology
    Meng-Hao Pan, Kun-Huan Zhang ... Shao-Chen Sun
    Research Article

    During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.