Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay

  1. Melissa A Hausburg
  2. Jason D Doles
  3. Sandra L Clement
  4. Adam B Cadwallader
  5. Monica N Hall
  6. Perry J Blackshear
  7. Jens Lykke-Andersen
  8. Bradley B Olwin  Is a corresponding author
  1. Ampio Pharmaceuticals, Inc., United States
  2. University of Colorado, United States
  3. University of Colorado Boulder, United States

Abstract

Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3' untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis.

Article and author information

Author details

  1. Melissa A Hausburg

    Ampio Pharmaceuticals, Inc., Englewood, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason D Doles

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra L Clement

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam B Cadwallader

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monica N Hall

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Perry J Blackshear

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jens Lykke-Andersen

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bradley B Olwin

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    For correspondence
    olwin@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1012.01, #1104.08) of the University of Colorado-Boulder.

Version history

  1. Received: May 16, 2014
  2. Accepted: March 26, 2015
  3. Accepted Manuscript published: March 27, 2015 (version 1)
  4. Version of Record published: April 30, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,846
    views
  • 760
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa A Hausburg
  2. Jason D Doles
  3. Sandra L Clement
  4. Adam B Cadwallader
  5. Monica N Hall
  6. Perry J Blackshear
  7. Jens Lykke-Andersen
  8. Bradley B Olwin
(2015)
Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay
eLife 4:e03390.
https://doi.org/10.7554/eLife.03390

Share this article

https://doi.org/10.7554/eLife.03390

Further reading

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.