Laser ablation of Dbx1 neurons in the pre-Bötzinger Complex stops inspiratory rhythm and impairs output in neonatal mice

  1. Xueying Wang
  2. John A Hayes
  3. Ann L Revill
  4. Hanbing Song
  5. Andrew Kottick
  6. Nikolas C Vann
  7. M Drew LaMar
  8. Maria CD Picardo
  9. Victoria T Akins
  10. Gregory D Funk
  11. Christopher A Del Negro  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. The College of William and Mary, United States
  3. University of Alberta, Canada

Abstract

To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ~15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.

Article and author information

Author details

  1. Xueying Wang

    Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John A Hayes

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ann L Revill

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanbing Song

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Kottick

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikolas C Vann

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Drew LaMar

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria CD Picardo

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria T Akins

    The College of William and Mary, Williamsburg, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Gregory D Funk

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Christopher A Del Negro

    The College of William and Mary, Williamsburg, United States
    For correspondence
    cadeln@wm.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) at The College of William & Mary, which ensures compliance with United States federal regulations concerning care and use of vertebrate animals in research, approved the following protocols (IACUC-2013-07-10-8828-cadeln). The anesthesia and surgery protocols are consistent with the 2011 guidelines of the Animal Research Advisory Committee, which is part of the Office of Animal Care and Use of the National Institutes of Health of the USA.

Version history

  1. Received: May 21, 2014
  2. Accepted: July 12, 2014
  3. Accepted Manuscript published: July 15, 2014 (version 1)
  4. Version of Record published: August 12, 2014 (version 2)

Copyright

© 2014, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,533
    views
  • 927
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xueying Wang
  2. John A Hayes
  3. Ann L Revill
  4. Hanbing Song
  5. Andrew Kottick
  6. Nikolas C Vann
  7. M Drew LaMar
  8. Maria CD Picardo
  9. Victoria T Akins
  10. Gregory D Funk
  11. Christopher A Del Negro
(2014)
Laser ablation of Dbx1 neurons in the pre-Bötzinger Complex stops inspiratory rhythm and impairs output in neonatal mice
eLife 3:e03427.
https://doi.org/10.7554/eLife.03427

Share this article

https://doi.org/10.7554/eLife.03427

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.