Allosteric signalling in the outer membrane translocation domain of PapC usher

  1. Irene Farabella
  2. Thieng Pham
  3. Nadine S Henderson
  4. Sebastian Geibel
  5. Gilles Phan
  6. David G Thanassi
  7. Anne H Delcour
  8. Gabriel Waksman
  9. Maya Topf  Is a corresponding author
  1. Birkbeck College, United Kingdom
  2. University of Houston, United States
  3. Stony Brook University, United States
  4. University of Würzburg, Germany
  5. Université Paris Descartes, France

Abstract

PapC ushers are outer-membrane proteins enabling assembly and secretion of P pili in uropathogenic E. coli. Their translocation domain is a large β-barrel occluded by a plug domain, which is displaced to allow the translocation of pilus subunits across the membrane. Previous studies suggested that this gating mechanism is controlled by a β-hairpin and an α-helix. To investigate the role of these elements in allosteric signal communication we developed a method combining evolutionary and molecular dynamics studies of the native translocation domain and mutants lacking the β-hairpin and/or α-helix. Analysis of a hybrid residue interaction network suggests distinct regions (residue 'communities') within the translocation domain (especially around β12-β14) linking these elements, thereby modulating PapC gating. Antibiotic sensitivity and electrophysiology experiments on a set of alanine-substitution mutants confirmed functional roles for four of these communities. This study illuminates the gating mechanism of PapC ushers and its importance in maintaining outer-membrane permeability.

Article and author information

Author details

  1. Irene Farabella

    Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Thieng Pham

    University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadine S Henderson

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Geibel

    University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Gilles Phan

    Université Paris Descartes, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. David G Thanassi

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne H Delcour

    University of Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gabriel Waksman

    Birkbeck College, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Maya Topf

    Birkbeck College, London, United Kingdom
    For correspondence
    m.topf@mail.cryst.bbk.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: May 30, 2014
  2. Accepted: September 29, 2014
  3. Accepted Manuscript published: October 1, 2014 (version 1)
  4. Version of Record published: October 28, 2014 (version 2)
  5. Version of Record updated: September 27, 2016 (version 3)

Copyright

© 2014, Farabella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,742
    views
  • 122
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Farabella
  2. Thieng Pham
  3. Nadine S Henderson
  4. Sebastian Geibel
  5. Gilles Phan
  6. David G Thanassi
  7. Anne H Delcour
  8. Gabriel Waksman
  9. Maya Topf
(2014)
Allosteric signalling in the outer membrane translocation domain of PapC usher
eLife 3:e03532.
https://doi.org/10.7554/eLife.03532

Share this article

https://doi.org/10.7554/eLife.03532

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Bing Liang Alvin Chew, AN Qi Ngoh ... Dahai Luo
    Research Article

    Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.