Large-scale filament formation inhibits the activity of CTP synthetase

  1. Rachael Barry
  2. Anne-Florence Bitbol
  3. Alexander Lorestani
  4. Emeric J Charles
  5. Chris H Habrian
  6. Jesse M Hansen
  7. Hsin-Jung Li
  8. Enoch P Baldwin
  9. Ned S Wingreen
  10. Justin M Kollman
  11. Zemer Gitai  Is a corresponding author
  1. Princeton University, United States
  2. McGill University, Canada
  3. University of California, Davis, United States

Abstract

CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity we show that polymerization inhibits activity and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously-uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable.

Article and author information

Author details

  1. Rachael Barry

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne-Florence Bitbol

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Lorestani

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Emeric J Charles

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Chris H Habrian

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jesse M Hansen

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Hsin-Jung Li

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Enoch P Baldwin

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ned S Wingreen

    Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Justin M Kollman

    McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Zemer Gitai

    Princeton University, Princeton, United States
    For correspondence
    zgitai@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mohan Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Received: June 9, 2014
  2. Accepted: July 15, 2014
  3. Accepted Manuscript published: July 16, 2014 (version 1)
  4. Version of Record published: August 11, 2014 (version 2)

Copyright

© 2014, Barry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,016
    views
  • 563
    downloads
  • 143
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachael Barry
  2. Anne-Florence Bitbol
  3. Alexander Lorestani
  4. Emeric J Charles
  5. Chris H Habrian
  6. Jesse M Hansen
  7. Hsin-Jung Li
  8. Enoch P Baldwin
  9. Ned S Wingreen
  10. Justin M Kollman
  11. Zemer Gitai
(2014)
Large-scale filament formation inhibits the activity of CTP synthetase
eLife 3:e03638.
https://doi.org/10.7554/eLife.03638

Share this article

https://doi.org/10.7554/eLife.03638

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.