How IGF-1 activates its receptor

  1. Jennifer M Kavran
  2. Jacqueline M McCabe
  3. Patrick O Byrne
  4. Mary Katherine Connacher
  5. Zhihong Wang
  6. Alexander Ramek
  7. Sarvenaz Sarabipour
  8. Yibing Shan
  9. David E Shaw
  10. Kalina Hristova
  11. Philip A Cole
  12. Daniel Leahy  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. University of the Sciences, United States
  3. D.E. Shaw Research, United States
  4. Johns Hopkins University, United States
  5. Columbia University, United States
  6. Johns Hopkins, United States

Abstract

The Type I Insulin-like Growth Factor Receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.

Article and author information

Author details

  1. Jennifer M Kavran

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Jacqueline M McCabe

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Patrick O Byrne

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Mary Katherine Connacher

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Zhihong Wang

    University of the Sciences, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Alexander Ramek

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  7. Sarvenaz Sarabipour

    Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Yibing Shan

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  9. David E Shaw

    D.E. Shaw Research, New York, United States
    Competing interests
    No competing interests declared.
  10. Kalina Hristova

    Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Philip A Cole

    Columbia University, New York, United States
    Competing interests
    Philip A Cole, Reviewing editor, eLife.
  12. Daniel Leahy

    Johns Hopkins, Baltimore, United States
    For correspondence
    dleahy@jhmi.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. John Kuriyan, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: June 23, 2014
  2. Accepted: September 23, 2014
  3. Accepted Manuscript published: September 25, 2014 (version 1)
  4. Version of Record published: October 28, 2014 (version 2)

Copyright

© 2014, Kavran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,018
    views
  • 1,645
    downloads
  • 152
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer M Kavran
  2. Jacqueline M McCabe
  3. Patrick O Byrne
  4. Mary Katherine Connacher
  5. Zhihong Wang
  6. Alexander Ramek
  7. Sarvenaz Sarabipour
  8. Yibing Shan
  9. David E Shaw
  10. Kalina Hristova
  11. Philip A Cole
  12. Daniel Leahy
(2014)
How IGF-1 activates its receptor
eLife 3:e03772.
https://doi.org/10.7554/eLife.03772

Share this article

https://doi.org/10.7554/eLife.03772

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Bing Liang Alvin Chew, AN Qi Ngoh ... Dahai Luo
    Research Article

    Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Dimitrios Vismpas, Friedrich Förster
    Insight

    Advanced cryo-EM approaches reveal surprising insights into the molecular structure that allows nascent proteins to be inserted into the membrane of the endoplasmic reticulum.