RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells

  1. Maaike P A van Bragt
  2. Xin Hu
  3. Ying Xie
  4. Zhe Li  Is a corresponding author
  1. Brigham and Women's Hospital, United States

Abstract

RUNX1 encodes a RUNX family transcription factor (TF) and was recently identified as a novel mutated gene in human luminal breast cancers. We found that Runx1 is expressed in all subpopulations of murine mammary epithelial cells (MECs) except the secretory alveolar luminal cells. Conditional knockout of Runx1 in MECs by MMTV-Cre led to a decrease in luminal MECs, largely due to a profound reduction in the estrogen receptor (ER)-positive mature luminal subpopulation, a phenotype that could be rescued by loss of either Trp53 or Rb1. Mechanistically RUNX1 represses Elf5, a master regulatory TF gene for alveolar cells, and regulates mature luminal TF/co-factor genes (e.g., Foxa1 and Cited1) involved in the ER program. Collectively, our data identified a key regulator of the ER+ luminal lineage whose disruption may contribute to development of ER+ luminal breast cancer when under the background of either TP53 or RB1 loss.

Article and author information

Author details

  1. Maaike P A van Bragt

    Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Hu

    Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Xie

    Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhe Li

    Brigham and Women's Hospital, Boston, United States
    For correspondence
    zli4@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Elaine Fuchs, Rockefeller University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) of Boston Children's Hospital (where the animals are housed) under protocol # 11-10-2034.

Version history

  1. Received: July 4, 2014
  2. Accepted: November 21, 2014
  3. Accepted Manuscript published: November 21, 2014 (version 1)
  4. Version of Record published: January 1, 2015 (version 2)

Copyright

© 2014, van Bragt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,139
    views
  • 569
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maaike P A van Bragt
  2. Xin Hu
  3. Ying Xie
  4. Zhe Li
(2014)
RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells
eLife 3:e03881.
https://doi.org/10.7554/eLife.03881

Share this article

https://doi.org/10.7554/eLife.03881

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.