The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation

  1. Tobias Willer
  2. Kei-ichiro Inamori
  3. David Venzke
  4. Corinne Harvey
  5. Greg Morgensen
  6. Yuji Hara
  7. Daniel Beltrán Valero de Bernabé
  8. Liping Yu
  9. Kevin M Wright
  10. Kevin P Campbell  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, United States
  2. Tohoku Pharmaceutical University, Japan
  3. Graduate School of Engineering, Kyoto University, Japan
  4. University of Iowa, Carver College of Medicine, United States
  5. Oregon Health and Science University, United States

Abstract

Dystroglycan is a cell membrane receptor that organizes the basement membrane by binding ligands in the extracellular matrix. Proper glycosylation of the α-dystroglycan (α-DG) subunit is essential for these activities, and lack thereof results in neuromuscular disease. Currently, neither the glycan synthesis pathway nor the roles of many known or putative glycosyltransferases that are essential for this process are well understood. Here we show that FKRP, FKTN, TMEM5 and B4GAT1 (formerly known as B3GNT1) localize to the Golgi and contribute to the O-mannosyl post-phosphorylation modification of α-DG. Moreover, we assigned B4GAT1 a function as a xylose β1,4-glucuronyltransferase. Nuclear magnetic resonance studies confirmed that a glucuronic acid β1,4-xylose disaccharide synthesized by B4GAT1 acts as an acceptor primer that can be elongated by LARGE with the ligand-binding heteropolysaccharide. Our findings greatly broaden the understanding of α-DG glycosylation and provide mechanistic insight into why mutations in B4GAT1 disrupt dystroglycan function and cause disease.

Article and author information

Author details

  1. Tobias Willer

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kei-ichiro Inamori

    Tohoku Pharmaceutical University, Komatsushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. David Venzke

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Corinne Harvey

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Greg Morgensen

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuji Hara

    Graduate School of Engineering, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Beltrán Valero de Bernabé

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liping Yu

    University of Iowa, Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin M Wright

    Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kevin P Campbell

    Howard Hughes Medical Institute, University of Iowa, Carver College of Medicine, Iowa City, United States
    For correspondence
    kevin-campbell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Ethics

Animal experimentation: Animal care, ethical usage and procedures were approved and performed in accordance with the standards set forth by the National Institutes of Health and the Animal Care Use and Review Committee at the University of Iowa (protocol #4081122). At the University of Iowa all mice are socially housed (unless single housing is required) under specific pathogen-free conditions in an AAALAC accredited animal facility. Housing conditions are as specified in the Guide for the Care and Use of Laboratory Animals (NRC). Mice are housed on Thoren brand, HEPA filtered ventilated racks, in solid bottom cages with mixed paper bedding. A standard 12/12-h light/dark cycle was used. Standard rodent chow (or special diet if required) and water is available ad libitum.

Version history

  1. Received: July 9, 2014
  2. Accepted: October 1, 2014
  3. Accepted Manuscript published: October 3, 2014 (version 1)
  4. Version of Record published: November 11, 2014 (version 2)

Copyright

© 2014, Willer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,593
    views
  • 389
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Willer
  2. Kei-ichiro Inamori
  3. David Venzke
  4. Corinne Harvey
  5. Greg Morgensen
  6. Yuji Hara
  7. Daniel Beltrán Valero de Bernabé
  8. Liping Yu
  9. Kevin M Wright
  10. Kevin P Campbell
(2014)
The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation
eLife 3:e03941.
https://doi.org/10.7554/eLife.03941

Share this article

https://doi.org/10.7554/eLife.03941

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.