Reliable cell cycle commitment in budding yeast is ensured by signal integration

  1. Xili Liu
  2. Xin Wang
  3. Xiaojing Yang
  4. Sen Liu
  5. Lingli Jiang
  6. Yimiao Qu
  7. Lufeng Hu
  8. Qi Ouyang
  9. Chao Tang  Is a corresponding author
  1. Harvard University, United States
  2. Peking University, China
  3. China Three Gorges University, China

Abstract

Cell fate decisions are critical for life, yet little is known about how their reliability is achieved when signals are noisy and fluctuating with time. Here we show that in budding yeast, the decision of cell cycle commitment (Start) is determined by the time integration of its triggering signal Cln3. We further identify the Start repressor, Whi5 as the integrator. The instantaneous kinase activity of Cln3-Cdk1 is recorded over time on the phosphorylated Whi5, and the decision is made only when phosphorylated Whi5 reaches a threshold. Cells adjust the threshold by modulating Whi5 concentration in different nutrient conditions to coordinate growth and division. Our work shows that the strategy of signal integration, which was previously found in decision-making behaviors of animals, is adopted at the cellular level to reduce noise and minimize uncertainty.

Article and author information

Author details

  1. Xili Liu

    Department of Systems Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xin Wang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaojing Yang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Sen Liu

    Institute of Molecular Biology, College of Medical Science, China Three Gorges University, Yichang, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Lingli Jiang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yimiao Qu

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lufeng Hu

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Qi Ouyang

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Chao Tang

    Center for Quantitative Biology, Peking University, Beijing, China
    For correspondence
    tangc@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. James Ferrell, Stanford University, United States

Version history

  1. Received: July 11, 2014
  2. Accepted: January 7, 2015
  3. Accepted Manuscript published: January 15, 2015 (version 1)
  4. Accepted Manuscript updated: January 16, 2015 (version 2)
  5. Version of Record published: February 5, 2015 (version 3)

Copyright

© 2015, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,465
    views
  • 535
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xili Liu
  2. Xin Wang
  3. Xiaojing Yang
  4. Sen Liu
  5. Lingli Jiang
  6. Yimiao Qu
  7. Lufeng Hu
  8. Qi Ouyang
  9. Chao Tang
(2015)
Reliable cell cycle commitment in budding yeast is ensured by signal integration
eLife 4:e03977.
https://doi.org/10.7554/eLife.03977

Share this article

https://doi.org/10.7554/eLife.03977

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.