Functional fission of parvalbumin interneuron classes during fast network events

  1. Csaba Varga  Is a corresponding author
  2. Mikko Oijala
  3. Jonathan Lish
  4. Gergely G Szabo
  5. Marianne Bezaire
  6. Ivan Marchionni
  7. Peyman Golshani
  8. Ivan Soltesz
  1. University of California, Irvine, United States
  2. David Geffen School of Medicine, University of California, Los Angeles, United States

Abstract

Fast spiking, parvalbumin (PV) expressing hippocampal interneurons are classified into basket, axo-axonic (chandelier) and bistratified cells. These cell classes play key roles in regulating local circuit operations and rhythmogenesis by releasing GABA in precise temporal patterns onto distinct domains of principal cells. Here we show that each of the three major PV cell classes further splits into functionally distinct subclasses during fast network events in vivo. During the slower (<10Hz) theta oscillations, each cell class exhibited its own characteristic, relatively uniform firing behavior. However, during faster (>90Hz) oscillations, within-class differences in PV interneuron discharges emerged that segregated along specific features of dendritic structure or somatic location. Functional divergence of PV subclasses during fast but not slow network oscillations effectively doubles the repertoire of spatio-temporal patterns of GABA release available for rapid circuit operations.

Article and author information

Author details

  1. Csaba Varga

    University of California, Irvine, Irvine, United States
    For correspondence
    csaba.varga@aok.pte.hu
    Competing interests
    The authors declare that no competing interests exist.
  2. Mikko Oijala

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Lish

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gergely G Szabo

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marianne Bezaire

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Marchionni

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peyman Golshani

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ivan Soltesz

    University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Frances K Skinner, University Health Network, and University of Toronto, Canada

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the University of California Irvine Animal Care and Use Committee (protocol #1999-1719) and the University of Pecs, Hungary . All surgery was performed under deep isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 14, 2014
  2. Accepted: November 6, 2014
  3. Accepted Manuscript published: November 6, 2014 (version 1)
  4. Version of Record published: December 4, 2014 (version 2)

Copyright

© 2014, Varga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,476
    views
  • 546
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Csaba Varga
  2. Mikko Oijala
  3. Jonathan Lish
  4. Gergely G Szabo
  5. Marianne Bezaire
  6. Ivan Marchionni
  7. Peyman Golshani
  8. Ivan Soltesz
(2014)
Functional fission of parvalbumin interneuron classes during fast network events
eLife 3:e04006.
https://doi.org/10.7554/eLife.04006

Share this article

https://doi.org/10.7554/eLife.04006

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.