Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria

  1. Takashi Imai
  2. Hidekazu Ishida
  3. Kazutomo Suzue
  4. Tomoyo Taniguchi
  5. Hiroko Okada
  6. Chikako Shimokawa
  7. Hajime Hisaeda  Is a corresponding author
  1. Gunma University Graduate School of Medicine, Japan
  2. Otsuka Pharmaceutical Co., Ltd, Japan
  3. RIKEN Center for Integrative Medical Science, Japan

Abstract

The protective immunity afforded by CD8+ T cells against blood-stage malaria remains controversial because no MHC class I molecules are displayed on parasite-infected human erythrocytes. We recently reported that rodent malaria parasites infect erythroblasts that express MHC class I antigens, which are recognized by CD8+ T cells. In this study, we demonstrate that the cytotoxic activity of CD8+ T cells contributes to the protection of mice against blood-stage malaria in a FasL-dependent manner. Malaria parasites infected erythroblasts express death receptor Fas. CD8+ T cells induce the externalization of phosphatidylserine (PS) on the infected erythroblasts in a cell-to-cell contact-dependent manner. PS enhances the engulfment of the infected erythroid cells by phagocytes. T-cell immunoglobulin- and mucin-domain-containing molecule (Tim-4) contributes to the phagocytosis of malaria parasites infected cells as phosphatidylserine receptor. Our findings provide insight into the molecular mechanisms underlying the protective immunity exerted by CD8+ T cells in collaboration with phagocytes.

Article and author information

Author details

  1. Takashi Imai

    Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Hidekazu Ishida

    Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Kazutomo Suzue

    Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomoyo Taniguchi

    Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hiroko Okada

    Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Chikako Shimokawa

    Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Nagasaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hajime Hisaeda

    Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
    For correspondence
    0521773@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ronald N Germain, National Institute of Allergy and Infectious Diseases, United States

Ethics

Animal experimentation: All mouse experiments were approved by the Committee for Ethics on Animal Experiments in the Faculty of Medicine, and performed under the control of the Guidelines for Animal Experiments in the Faculty of Medicine, Gunma University and Kyushu University, according to Japanese law (no. 105) and notification (no. 6) of the Government of Japan. No human samples were used in these experiments.

Version history

  1. Received: August 2, 2014
  2. Accepted: February 24, 2015
  3. Accepted Manuscript published: March 11, 2015 (version 1)
  4. Version of Record published: March 20, 2015 (version 2)

Copyright

© 2015, Imai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,970
    views
  • 491
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takashi Imai
  2. Hidekazu Ishida
  3. Kazutomo Suzue
  4. Tomoyo Taniguchi
  5. Hiroko Okada
  6. Chikako Shimokawa
  7. Hajime Hisaeda
(2015)
Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria
eLife 4:e04232.
https://doi.org/10.7554/eLife.04232

Share this article

https://doi.org/10.7554/eLife.04232

Further reading

    1. Immunology and Inflammation
    Xiuyuan Lu, Hiroki Hayashi ... Sho Yamasaki
    Research Article

    SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.