Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness

  1. Oluwaseun Akeju  Is a corresponding author
  2. Marco L Loggia
  3. Ciprian Catana
  4. Kara J Pavone
  5. Rafael Vazquez
  6. James Rhee
  7. Violeta Contreras Ramirez
  8. Daniel B Chonde
  9. David Izquierdo-Garcia
  10. Grae Arabasz
  11. Shirley Hsu
  12. Kathleen Habeeb
  13. Jacob M Hooker
  14. Vitaly Napadow
  15. Emery Brown
  16. Patrick L Purdon
  1. Massachusetts General Hospital, Harvard Medical School, United States
  2. MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, United States
  3. Massachusetts General Hospital, United States
  4. Massachusetts Institute of Technology, United States

Abstract

Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow, and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness.

Article and author information

Author details

  1. Oluwaseun Akeju

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    For correspondence
    oluwaseun.akeju@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco L Loggia

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ciprian Catana

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kara J Pavone

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafael Vazquez

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James Rhee

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Violeta Contreras Ramirez

    Massachusetts General Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel B Chonde

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David Izquierdo-Garcia

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Grae Arabasz

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Shirley Hsu

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kathleen Habeeb

    Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jacob M Hooker

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Vitaly Napadow

    MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Emery Brown

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Patrick L Purdon

    Massachusetts Institute of Technology, Cambridge,, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jody C Culham, University of Western Ontario, Canada

Ethics

Human subjects: The Human Research Committee and the Radioactive Drug Research Committee at the Massachusetts General Hospital approved the study protocol. After an initial email/phone screen, potential study subjects were invited to participate in a screening visit. At the screening visit, informed consent including the consent to publish was requested after the nature and possible consequences of the study was explained. All subjects provided informed consent and were American Society of Anesthesiology Physical Status I with Mallampati Class I airway anatomy.

Version history

  1. Received: August 25, 2014
  2. Accepted: November 26, 2014
  3. Accepted Manuscript published: November 28, 2014 (version 1)
  4. Version of Record published: January 1, 2015 (version 2)

Copyright

© 2014, Akeju et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,454
    views
  • 660
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oluwaseun Akeju
  2. Marco L Loggia
  3. Ciprian Catana
  4. Kara J Pavone
  5. Rafael Vazquez
  6. James Rhee
  7. Violeta Contreras Ramirez
  8. Daniel B Chonde
  9. David Izquierdo-Garcia
  10. Grae Arabasz
  11. Shirley Hsu
  12. Kathleen Habeeb
  13. Jacob M Hooker
  14. Vitaly Napadow
  15. Emery Brown
  16. Patrick L Purdon
(2014)
Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness
eLife 3:e04499.
https://doi.org/10.7554/eLife.04499

Share this article

https://doi.org/10.7554/eLife.04499

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.