RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies

  1. Fiona Tulloch
  2. Nicky J Atkinson
  3. David J Evans
  4. Martin D Ryan
  5. Peter Simmonds  Is a corresponding author
  1. University of St Andrews, United Kingdom
  2. University of Edinburgh, United Kingdom
  3. University of Warwick, United Kingdom

Abstract

Mutating RNA virus genomes to alter codon pair (CP) frequencies and reduce translation efficiency has been advocated as a method to generate safe, attenuated virus vaccines. However, selection for disfavoured CPs leads to unintended increases in CpG and UpA dinucleotide frequencies that also attenuate replication. We designed and phenotypically characterised mutants of the picornavirus, echovirus 7, in which these parameters were independently varied to determine which most influenced virus replication. CpG and UpA dinucleotide frequencies primarily influenced virus replication ability while no fitness differences were observed between mutants with different CP usage where dinucleotide frequencies were kept constant. Contrastingly, translation efficiency was unaffected by either CP usage or dinucleotide frequencies. This mechanistic insight is critical for future rational design of live virus vaccines and their safety evaluation; attenuation is mediated through enhanced innate immune responses to viruses with elevated CpG/UpA dinucleotide frequencies rather the viruses themselves being intrinsically defective.

Article and author information

Author details

  1. Fiona Tulloch

    School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicky J Atkinson

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Evans

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin D Ryan

    School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Simmonds

    Infection and Immunity Division, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Peter.Simmonds@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen P Goff, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: August 28, 2014
  2. Accepted: December 8, 2014
  3. Accepted Manuscript published: December 9, 2014 (version 1)
  4. Version of Record published: January 9, 2015 (version 2)

Copyright

© 2014, Tulloch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,377
    views
  • 711
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fiona Tulloch
  2. Nicky J Atkinson
  3. David J Evans
  4. Martin D Ryan
  5. Peter Simmonds
(2014)
RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies
eLife 3:e04531.
https://doi.org/10.7554/eLife.04531

Share this article

https://doi.org/10.7554/eLife.04531

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Clara Akpan
    Insight

    Systematically tracking and analysing reproductive loss in livestock helps with efforts to safeguard the health and productivity of food animals by identifying causes and high-risk areas.

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.