High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force generation

  1. Zhiguo Shang
  2. Kaifeng Zhou
  3. Chen Xu
  4. Roseann Csencsits
  5. Jared C Cochran
  6. Charles V Sindelar  Is a corresponding author
  1. Brandeis University, United States
  2. Yale University, United States
  3. Lawrence Berkeley National Laboratory, United States
  4. Indiana University, United States

Abstract

Microtubule-based transport by the kinesin motors, powered by ATP hydrolysis, is essential for a wide range of vital processes in eukaryotes. We obtained insight into this process by developing atomic models for no-nucleotide and ATP states of the monomeric kinesin motor domain on microtubules from cryo-EM reconstructions at 5-6Å resolution. By comparing these models with existing X-ray structures of ADP-bound kinesin, we infer a mechanistic scheme in which microtubule attachment, mediated by a universally conserved 'linchpin' residue in kinesin (N255), triggers a clamshell opening of the nucleotide cleft and accompanying release of ADP. Binding of ATP re-closes the cleft in a manner that tightly couples to translocation of cargo, via kinesin's 'neck linker' element. These structural transitions are reminiscent of the analogous nucleotide-exchange steps in the myosin and F1-ATPase motors, and inform how the two heads of a kinesin dimer 'gate' each other to promote coordinated stepping along microtubules.

Article and author information

Author details

  1. Zhiguo Shang

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaifeng Zhou

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chen Xu

    Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roseann Csencsits

    Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jared C Cochran

    Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles V Sindelar

    Yale University, New Haven, United States
    For correspondence
    charles.sindelar@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anthony A Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Version history

  1. Received: September 12, 2014
  2. Accepted: November 20, 2014
  3. Accepted Manuscript published: November 21, 2014 (version 1)
  4. Accepted Manuscript updated: November 28, 2014 (version 2)
  5. Version of Record published: December 24, 2014 (version 3)

Copyright

© 2014, Shang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,502
    views
  • 757
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiguo Shang
  2. Kaifeng Zhou
  3. Chen Xu
  4. Roseann Csencsits
  5. Jared C Cochran
  6. Charles V Sindelar
(2014)
High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force generation
eLife 3:e04686.
https://doi.org/10.7554/eLife.04686

Share this article

https://doi.org/10.7554/eLife.04686

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Bing Liang Alvin Chew, AN Qi Ngoh ... Dahai Luo
    Research Article

    Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Dimitrios Vismpas, Friedrich Förster
    Insight

    Advanced cryo-EM approaches reveal surprising insights into the molecular structure that allows nascent proteins to be inserted into the membrane of the endoplasmic reticulum.