Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs

  1. Lauran Madden
  2. Mark Juhas
  3. William E Kraus
  4. George A Truskey
  5. Nenad Bursac  Is a corresponding author
  1. Duke University, United States
  2. Duke University School of Medicine, United States

Abstract

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.

Article and author information

Author details

  1. Lauran Madden

    Department of Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Juhas

    Department of Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. William E Kraus

    Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. George A Truskey

    Department of Biomedical Engineering, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nenad Bursac

    Department of Biomedical Engineering, Duke University, Durham, United States
    For correspondence
    nbursac@duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Amy J Wagers, Harvard University, United States

Ethics

Human subjects: Human skeletal muscle samples were obtained through standard needle biopsy or surgical waste under Duke University IRB approved protocols (Pro00048509 and Pro00012628).

Version history

  1. Received: September 23, 2014
  2. Accepted: January 8, 2015
  3. Accepted Manuscript published: January 9, 2015 (version 1)
  4. Version of Record published: February 16, 2015 (version 2)

Copyright

© 2015, Madden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,117
    views
  • 2,250
    downloads
  • 249
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauran Madden
  2. Mark Juhas
  3. William E Kraus
  4. George A Truskey
  5. Nenad Bursac
(2015)
Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs
eLife 4:e04885.
https://doi.org/10.7554/eLife.04885

Share this article

https://doi.org/10.7554/eLife.04885

Further reading

    1. Stem Cells and Regenerative Medicine
    Jing-Ping Wang, Chun-Hao Hung ... C-K James Shen
    Research Article

    A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.