Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation

  1. Roxana E Georgescu
  2. Grant D Schauer
  3. Nina Y Yao
  4. Lance D Langston
  5. Olga Yurieva
  6. Dan Zhang
  7. Jeff Finkelstein
  8. Mike E O'Donnell  Is a corresponding author
  1. Howard Hughes Medical Institute, Rockefeller University, United States

Abstract

We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu, Langston et al. 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork.

Article and author information

Author details

  1. Roxana E Georgescu

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Grant D Schauer

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nina Y Yao

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lance D Langston

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga Yurieva

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dan Zhang

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeff Finkelstein

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mike E O'Donnell

    DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
    For correspondence
    odonnel@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Johannes Walter, Harvard Medical School, United States

Version history

  1. Received: October 1, 2014
  2. Accepted: April 13, 2015
  3. Accepted Manuscript published: April 14, 2015 (version 1)
  4. Version of Record published: April 30, 2015 (version 2)

Copyright

© 2015, Georgescu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,196
    views
  • 873
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roxana E Georgescu
  2. Grant D Schauer
  3. Nina Y Yao
  4. Lance D Langston
  5. Olga Yurieva
  6. Dan Zhang
  7. Jeff Finkelstein
  8. Mike E O'Donnell
(2015)
Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
eLife 4:e04988.
https://doi.org/10.7554/eLife.04988

Share this article

https://doi.org/10.7554/eLife.04988

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.