Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1

  1. Edward Kim
  2. Yuan Wang
  3. Sun-Jung Kim
  4. Miriam Bornhorst
  5. Emmanuelle S Jecrois
  6. Todd E Anthony
  7. Chenran Wang
  8. Yi E Li
  9. Jun-Lin Guan
  10. Geoffrey G Murphy
  11. Yuan Zhu  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Children's National Medical Center, United States
  3. Rockefeller University, United States
  4. University of Cincinnati College of Medicine, United States

Abstract

Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

Article and author information

Author details

  1. Edward Kim

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuan Wang

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sun-Jung Kim

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miriam Bornhorst

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuelle S Jecrois

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Todd E Anthony

    Laboratory of Molecular Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chenran Wang

    Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yi E Li

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jun-Lin Guan

    Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Geoffrey G Murphy

    Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuan Zhu

    Gilbert Family Neurofibromatosis Institute, Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
    For correspondence
    yzhu@childrensnational.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Duojia Pan, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All mice in this study were cared for according to the guidelines that were approved by the Animal Care and Use Committees of the University of Michigan at Ann Arbor, MI and the Children's National Medical Center in Washington, DC. The approved protocol number at the University of Michigan is PRO00004481. The project (ID# 30001543) was approved by the IACUC (Protocol#: 309-13-09) of the Children's National Medical Center at Washington.

Version history

  1. Received: October 13, 2014
  2. Accepted: December 22, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 21, 2015 (version 2)

Copyright

© 2014, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,283
    views
  • 410
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward Kim
  2. Yuan Wang
  3. Sun-Jung Kim
  4. Miriam Bornhorst
  5. Emmanuelle S Jecrois
  6. Todd E Anthony
  7. Chenran Wang
  8. Yi E Li
  9. Jun-Lin Guan
  10. Geoffrey G Murphy
  11. Yuan Zhu
(2014)
Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1
eLife 3:e05151.
https://doi.org/10.7554/eLife.05151

Share this article

https://doi.org/10.7554/eLife.05151

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.