Reciprocal and dynamic polarization of planar cell polarity core components and myosin

  1. Erin Newman-Smith
  2. Matthew J Kourakis
  3. Wendy Reeves
  4. Michael Veeman
  5. William C Smith  Is a corresponding author
  1. University of California, Santa Barbara, United States

Abstract

The Ciona notochord displays PCP-dependent polarity, with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalize with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Washout of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line aimless myosin polarization in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.

Article and author information

Author details

  1. Erin Newman-Smith

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew J Kourakis

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wendy Reeves

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Veeman

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William C Smith

    Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    w_smith@lifesci.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute for Fundamental Research, India

Version history

  1. Received: October 28, 2014
  2. Accepted: April 10, 2015
  3. Accepted Manuscript published: April 13, 2015 (version 1)
  4. Version of Record published: May 5, 2015 (version 2)

Copyright

© 2015, Newman-Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,044
    views
  • 424
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin Newman-Smith
  2. Matthew J Kourakis
  3. Wendy Reeves
  4. Michael Veeman
  5. William C Smith
(2015)
Reciprocal and dynamic polarization of planar cell polarity core components and myosin
eLife 4:e05361.
https://doi.org/10.7554/eLife.05361

Share this article

https://doi.org/10.7554/eLife.05361

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.