Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF

  1. Guo Cheng
  2. Ming Zhong
  3. Riki Kawaguchi
  4. Miki Kassai
  5. Muayyad Al-Ubaidi
  6. Jun Deng
  7. Mariam Ter-Stepanian
  8. Hui Sun  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad biological activities. It was first identified as a neurotrophic factor and later as the most potent natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. Numerous animal models demonstrated its therapeutic value in treating blinding diseases and diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells and the identities of the cell-surface receptors responsible for its activities. Here we report the identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. Using distinct cellular models, we demonstrate their cell type-specific receptor activities through loss of function and gain of function studies. Our experiments suggest that PEDF receptors form homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the receptors. Mutations in the intracellular domain can have profound effects on receptor activities.

Article and author information

Author details

  1. Guo Cheng

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ming Zhong

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Riki Kawaguchi

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miki Kassai

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Muayyad Al-Ubaidi

    Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Deng

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mariam Ter-Stepanian

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hui Sun

    Department of Physiology, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    hsun@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael S Brown, The University of Texas Southwestern Medical Center, United States

Version history

  1. Received: October 30, 2014
  2. Accepted: December 20, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 23, 2015 (version 2)

Copyright

© 2014, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,816
    views
  • 558
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guo Cheng
  2. Ming Zhong
  3. Riki Kawaguchi
  4. Miki Kassai
  5. Muayyad Al-Ubaidi
  6. Jun Deng
  7. Mariam Ter-Stepanian
  8. Hui Sun
(2014)
Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF
eLife 3:e05401.
https://doi.org/10.7554/eLife.05401

Share this article

https://doi.org/10.7554/eLife.05401

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.