A map of directional genetic interactions in a metazoan cell

  1. Bernd Fischer
  2. Thomas Sandmann
  3. Thomas Horn
  4. Maximilian Billmann
  5. Varun Chaudhary
  6. Wolfgang Huber
  7. Michael Boutros  Is a corresponding author
  1. European Molecular Biology Laboratory, Germany
  2. German Cancer Research Center, Germany

Abstract

Gene-gene interactions shape complex phenotypes and modify the effects of mutations during development and disease. The effects of statistical gene-gene interactions on phenotypes have been used to assign genes to functional modules. However, directional, epistatic interactions, which reflect regulatory relationships between genes, have been challenging to map at large-scale. Here, we used combinatorial RNA interference and automated single-cell phenotyping to generate a large genetic interaction map for 21 phenotypic features of Drosophila cells. We devised a method that combines genetic interactions on multiple phenotypes to reveal directional relationships. This network reconstructed the sequence of protein activities in mitosis. Moreover, it revealed that the Ras pathway interacts with the SWI/SNF chromatin-remodelling complex, an interaction that we show is conserved in human cancer cells. Our study presents a powerful approach for reconstructing directional regulatory networks and provides a resource for the interpretation of functional consequences of genetic alterations.

Article and author information

Author details

  1. Bernd Fischer

    Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Sandmann

    Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Horn

    Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Maximilian Billmann

    Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Varun Chaudhary

    Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Wolfgang Huber

    Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Boutros

    Division of Signalling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
    For correspondence
    m.boutros@dkfz.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christopher K Glass, University of California, San Diego, United States

Version history

  1. Received: November 3, 2014
  2. Accepted: February 28, 2015
  3. Accepted Manuscript published: March 6, 2015 (version 1)
  4. Version of Record published: April 2, 2015 (version 2)

Copyright

© 2015, Fischer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,124
    views
  • 1,190
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bernd Fischer
  2. Thomas Sandmann
  3. Thomas Horn
  4. Maximilian Billmann
  5. Varun Chaudhary
  6. Wolfgang Huber
  7. Michael Boutros
(2015)
A map of directional genetic interactions in a metazoan cell
eLife 4:e05464.
https://doi.org/10.7554/eLife.05464

Share this article

https://doi.org/10.7554/eLife.05464

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.