The Ret receptor regulates sensory neuron dendrite growth and integrin mediated adhesion

  1. Peter Soba  Is a corresponding author
  2. Chun Han
  3. Yi Zheng
  4. Daniel Perea
  5. Irene Miguel-Aliaga
  6. Lily Yeh Jan
  7. Yuh Nung Jan
  1. University of Hamburg, Germany
  2. Cornell University, United States
  3. Howard Hughes Medical Institute, University of California, San Francisco, United States
  4. Imperial College London, United Kingdom

Abstract

Neurons develop highly stereotyped receptive fields by coordinated growth of their dendrites. Although cell surface cues play a major role in this process, few dendrite specific signals have been identified to date. We conducted an in vivo RNAi screen in Drosophila class IV dendritic arborization (C4da) neurons and identified the conserved Ret receptor, known to play a role in axon guidance, as an important regulator of dendrite development. The loss of Ret results in severe dendrite defects due to loss of extracellular matrix adhesion, thus impairing growth within a 2D plane. We provide evidence that Ret interacts with integrins to regulate dendrite adhesion via rac1. In addition, Ret is required for dendrite stability and normal F-actin distribution suggesting it has an essential role in dendrite maintenance. We propose novel functions for Ret as a regulator in dendrite patterning and adhesion distinct from its role in axon guidance.

Article and author information

Author details

  1. Peter Soba

    Center for Molecular Neurobiology, University Medical Campus, University of Hamburg, Hamburg, Germany
    For correspondence
    peter.soba@zmnh.uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Chun Han

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi Zheng

    Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Perea

    Gut Signalling and Metabolism Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene Miguel-Aliaga

    Gut Signalling and Metabolism Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Lily Yeh Jan

    Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuh Nung Jan

    Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christine E Holt, University of Cambridge, United Kingdom

Version history

  1. Received: November 5, 2014
  2. Accepted: March 11, 2015
  3. Accepted Manuscript published: March 12, 2015 (version 1)
  4. Version of Record published: April 9, 2015 (version 2)

Copyright

© 2015, Soba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,412
    views
  • 861
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter Soba
  2. Chun Han
  3. Yi Zheng
  4. Daniel Perea
  5. Irene Miguel-Aliaga
  6. Lily Yeh Jan
  7. Yuh Nung Jan
(2015)
The Ret receptor regulates sensory neuron dendrite growth and integrin mediated adhesion
eLife 4:e05491.
https://doi.org/10.7554/eLife.05491

Share this article

https://doi.org/10.7554/eLife.05491

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.