Abstract

The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process.

Article and author information

Author details

  1. Michele LeRoux

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin L Kirkpatrick

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena I Montauti

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bao Q Tran

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. S Brook Peterson

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brittany N Harding

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John C Whitney

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alistair B Russell

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Beth Traxler

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Young Ah Goo

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David R Goodlett

    Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Paul A Wiggins

    Department of Physics, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Joseph D Mougous

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mougous@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Laub, Massachusetts Institute of Technology, United States

Version history

  1. Received: November 20, 2014
  2. Accepted: January 30, 2015
  3. Accepted Manuscript published: February 2, 2015 (version 1)
  4. Version of Record published: March 3, 2015 (version 2)

Copyright

© 2015, LeRoux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,333
    views
  • 1,107
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michele LeRoux
  2. Robin L Kirkpatrick
  3. Elena I Montauti
  4. Bao Q Tran
  5. S Brook Peterson
  6. Brittany N Harding
  7. John C Whitney
  8. Alistair B Russell
  9. Beth Traxler
  10. Young Ah Goo
  11. David R Goodlett
  12. Paul A Wiggins
  13. Joseph D Mougous
(2015)
Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa
eLife 4:e05701.
https://doi.org/10.7554/eLife.05701

Share this article

https://doi.org/10.7554/eLife.05701

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Clara Akpan
    Insight

    Systematically tracking and analysing reproductive loss in livestock helps with efforts to safeguard the health and productivity of food animals by identifying causes and high-risk areas.