Cerebellar associative sensory learning defects in five mouse autism models

  1. Alexander D Kloth
  2. Aleksandra Badura
  3. Amy Li
  4. Adriana Cherskov
  5. Sara G Connolly
  6. Andrea Giovannucci
  7. M Ali Bangash
  8. Giorgio Grasselli
  9. Olga Peñagarikano
  10. Claire Piochon
  11. Peter T Tsai
  12. Daniel H Geschwind
  13. Christian Hansel
  14. Mustafa Sahin
  15. Toru Takumi
  16. Paul F Worley
  17. Samuel S H Wang  Is a corresponding author
  1. Princeton University, United States
  2. Johns Hopkins University School of Medicine, United States
  3. University of Chicago, United States
  4. University of California, Los Angeles, United States
  5. Harvard Medical School, United States
  6. RIKEN Brain Science Institute, Japan

Abstract

Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2-/-, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+) and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, all associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule-cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models.

Article and author information

Author details

  1. Alexander D Kloth

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aleksandra Badura

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Li

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adriana Cherskov

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sara G Connolly

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Giovannucci

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. M Ali Bangash

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Giorgio Grasselli

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Peñagarikano

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Claire Piochon

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter T Tsai

    The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel H Geschwind

    Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Hansel

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Mustafa Sahin

    The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Toru Takumi

    RIKEN Brain Science Institute, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  16. Paul F Worley

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Samuel S H Wang

    Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    sswang@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Michael Häusser, University College London, United Kingdom

Ethics

Animal experimentation: All experiments were performed according to protocols (#1943-13) approved by the Princeton University Institutional Animal Care and Use Committee. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: December 13, 2014
  2. Accepted: July 3, 2015
  3. Accepted Manuscript published: July 9, 2015 (version 1)
  4. Version of Record published: July 24, 2015 (version 2)

Copyright

© 2015, Kloth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,021
    views
  • 1,377
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander D Kloth
  2. Aleksandra Badura
  3. Amy Li
  4. Adriana Cherskov
  5. Sara G Connolly
  6. Andrea Giovannucci
  7. M Ali Bangash
  8. Giorgio Grasselli
  9. Olga Peñagarikano
  10. Claire Piochon
  11. Peter T Tsai
  12. Daniel H Geschwind
  13. Christian Hansel
  14. Mustafa Sahin
  15. Toru Takumi
  16. Paul F Worley
  17. Samuel S H Wang
(2015)
Cerebellar associative sensory learning defects in five mouse autism models
eLife 4:e06085.
https://doi.org/10.7554/eLife.06085

Share this article

https://doi.org/10.7554/eLife.06085

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.