In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse

  1. Marco Morselli  Is a corresponding author
  2. William A Pastor
  3. Barbara Montanini
  4. Kevin Nee
  5. Roberto Ferrari
  6. Kai Fu
  7. Giancarlo Bonora
  8. Liudmilla Rubbi
  9. Amander T Clark
  10. Simone Ottonello
  11. Steven E Jacobsen
  12. Matteo Pellegrini
  1. University of California, Los Angeles, United States
  2. Laboratory of Functional Genomics and Protein Engineering, Italy

Abstract

Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and Set2 show an increase of relative 5meC levels at the TSS and a decrease in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance of H3K36 methylation for gene-body DNA methylation in vivo.

Article and author information

Author details

  1. Marco Morselli

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    mmorselli@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. William A Pastor

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barbara Montanini

    Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Kevin Nee

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Roberto Ferrari

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai Fu

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Giancarlo Bonora

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liudmilla Rubbi

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amander T Clark

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Simone Ottonello

    Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Steven E Jacobsen

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Matteo Pellegrini

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bing Ren, University of California, San Diego School of Medicine, United States

Ethics

Animal experimentation: All animal experimentation was conducted with the highest ethical standards in accordance with UCLA policy and procedures (DHHS OLAW A3196-01, AAALAC #000408 and protocol # 2008-070), and applicable provisions of the USDA Animal Welfare Act Regulations, the Public Health Service Policy on Humane Care and Use of Laboratory Animals, and the Guide for the Care and Use of Laboratory Animals.

Version history

  1. Received: December 20, 2014
  2. Accepted: April 2, 2015
  3. Accepted Manuscript published: April 7, 2015 (version 1)
  4. Accepted Manuscript updated: April 8, 2015 (version 2)
  5. Version of Record published: April 29, 2015 (version 3)
  6. Version of Record updated: August 31, 2017 (version 4)

Copyright

© 2015, Morselli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,154
    views
  • 1,431
    downloads
  • 137
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marco Morselli
  2. William A Pastor
  3. Barbara Montanini
  4. Kevin Nee
  5. Roberto Ferrari
  6. Kai Fu
  7. Giancarlo Bonora
  8. Liudmilla Rubbi
  9. Amander T Clark
  10. Simone Ottonello
  11. Steven E Jacobsen
  12. Matteo Pellegrini
(2015)
In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse
eLife 4:e06205.
https://doi.org/10.7554/eLife.06205

Share this article

https://doi.org/10.7554/eLife.06205

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.