Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators

  1. Rory P Wilson  Is a corresponding author
  2. Iwan W Griffiths
  3. Michael GL Mills
  4. Chris Carbone
  5. John W Wilson
  6. David M Scantlebury
  1. Swansea University, Wales
  2. The Lewis Foundation, South Africa
  3. Zoological Society of London, United Kingdom
  4. University of Pretoria, South Africa
  5. Queen's University Belfast, United Kingdom

Abstract

The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.

Article and author information

Author details

  1. Rory P Wilson

    Swansea Lab for Animal Movement, Department of Biosciences, College of Science, Swansea University, Swansea, Wales
    For correspondence
    r.p.wilson@swansea.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Iwan W Griffiths

    College of Engineering, Swansea University, Swansea, Wales
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael GL Mills

    The Lewis Foundation, Johannesburg, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  4. Chris Carbone

    Institute of Zoology, Zoological Society of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. John W Wilson

    Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Scantlebury

    School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Iain D Couzin, Princeton University, United States

Ethics

Animal experimentation: Permission and ethical clearance were granted by SANParks ethical and research committees to conduct the field research, Project Number 2006-05-10 MGMI. The study was performed in accordance with the commendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All immobilizationand collaring of wild animals was conducted by a registered individual (GM), under the direction of a SANParks veterinarian.

Version history

  1. Received: January 14, 2015
  2. Accepted: August 2, 2015
  3. Accepted Manuscript published: August 7, 2015 (version 1)
  4. Version of Record published: August 21, 2015 (version 2)

Copyright

© 2015, Wilson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,903
    views
  • 318
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rory P Wilson
  2. Iwan W Griffiths
  3. Michael GL Mills
  4. Chris Carbone
  5. John W Wilson
  6. David M Scantlebury
(2015)
Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators
eLife 4:e06487.
https://doi.org/10.7554/eLife.06487

Share this article

https://doi.org/10.7554/eLife.06487

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Emilia Johnson, Reuben Sunil Kumar Sharma ... Kimberly Fornace
    Research Article

    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.