Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance

Abstract

Inheritance of gene expression states is fundamental for cells to 'remember' past events, such as environmental or developmental cues. The conserved Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression of many genes in animals and plants and modifies chromatin at its targets. Histones modified by PRC2 can be inherited through cell division. However, it remains unclear whether this inheritance can direct long-term memory of individual gene expression states (cis memory) or instead if local chromatin states are dictated by the concentrations of diffusible factors (trans memory). By monitoring the expression of two copies of the Arabidopsis Polycomb target gene FLC in the same plants, we show that one copy can be repressed while the other is active. Furthermore, this 'mixed' expression state is inherited through many cell divisions as plants develop. These data demonstrate that epigenetic memory of FLC expression is stored not in trans but in cis.

Article and author information

Author details

  1. Scott Berry

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew Hartley

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Tjelvar S G Olsson

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Caroline Dean

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Martin Howard

    John Innes Centre, Norwich, United Kingdom
    For correspondence
    martin.howard@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Daniel Zilberman, University of California, Berkeley, United States

Version history

  1. Received: February 25, 2015
  2. Accepted: May 7, 2015
  3. Accepted Manuscript published: May 8, 2015 (version 1)
  4. Version of Record published: June 2, 2015 (version 2)

Copyright

© 2015, Berry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,924
    views
  • 1,383
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott Berry
  2. Matthew Hartley
  3. Tjelvar S G Olsson
  4. Caroline Dean
  5. Martin Howard
(2015)
Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance
eLife 4:e07205.
https://doi.org/10.7554/eLife.07205

Share this article

https://doi.org/10.7554/eLife.07205

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.