ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

  1. Wei-Ta Chen
  2. Nancy D Ebelt
  3. Travis H Stracker
  4. Blerta Xhemalce
  5. Carla L Van Den Berg
  6. Kyle M Miller  Is a corresponding author
  1. University of Texas at Austin, United States
  2. Institute for Research in Biomedicine, Spain

Abstract

Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

Article and author information

Author details

  1. Wei-Ta Chen

    Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nancy D Ebelt

    Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Travis H Stracker

    Oncology Programme, Institute for Research in Biomedicine, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Blerta Xhemalce

    Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carla L Van Den Berg

    Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyle M Miller

    Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    For correspondence
    kyle.miller@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joaquin M Espinosa, University of Colorado Boulder, United States

Ethics

Animal experimentation: Experiments involving Balb/c mice for this study were performed in strict accordance with guidelines set forth for the handling and care of animals by the institutional animal care and use committee (IACUC) protocols (AUP-2012-00075) of the University of Texas at Austin.

Version history

  1. Received: February 28, 2015
  2. Accepted: May 31, 2015
  3. Accepted Manuscript published: June 1, 2015 (version 1)
  4. Version of Record published: June 12, 2015 (version 2)

Copyright

© 2015, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,700
    views
  • 992
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wei-Ta Chen
  2. Nancy D Ebelt
  3. Travis H Stracker
  4. Blerta Xhemalce
  5. Carla L Van Den Berg
  6. Kyle M Miller
(2015)
ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion
eLife 4:e07270.
https://doi.org/10.7554/eLife.07270

Share this article

https://doi.org/10.7554/eLife.07270

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Cell Biology
    Jun Yang, Shitian Zou ... Xiaochun Bai
    Research Article

    Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.