Abstract

While the mammalian macrophage phenotypes have been intensively studied in vitro, the dynamic of their phenotypic polarization has never been investigated in live vertebrates. We used the zebrafish as a live model to identify and trail macrophage subtypes. We generated a transgenic line whose macrophages expressing tnfa, a key feature of classically activated (M1) macrophages, express fluorescent proteins Tg(mpeg1:mCherryF/tnfa:eGFP-F). Using 4D-confocal microscopy, we showed that both aseptic wounding and E. coli inoculation triggered macrophage recruitment, some of which started to express tnfa. RT-qPCR on FACS-sorted tnfa+ and tnfa- macrophages showed that they respectively expressed M1 and alternatively activated (M2) mammalian markers. Fate tracing of tnfa+ macrophages during the time-course of inflammation demonstrated that pro-inflammatory macrophages converted into M2-like phenotype during the resolution step. Our results reveal the diversity and plasticity of zebrafish macrophage subsets and underline the similarities with mammalian macrophages proposing a new system to study macrophage functional dynamic.

Article and author information

Author details

  1. Mai Nguyen Chi

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Béryl Laplace-Builhe

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jana Travnickova

    Dynamique des Interactions Membranaires Normales et Pathologiques, Centre national de la recherche scientifique, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Patricia Luz-Crawford

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Gautier Tejedor

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Quang Tien Phan

    Dynamique des Interactions Membranaires Normales et Pathologiques, Centre national de la recherche scientifique, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Duroux-Richard

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Pierre Levraud

    Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Karima Kissa

    Dynamique des Interactions Membranaires Normales et Pathologiques, Centre national de la recherche scientifique, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Georges Lutfalla

    Dynamique des Interactions Membranaires Normales et Pathologiques, Centre national de la recherche scientifique, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Christian Jorgensen

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Farida Djouad

    Institut de Médecine Régénérative et Biothérapies, Institut national de la santé et de la recherche médicale, Montpellier, France
    For correspondence
    farida.djouad@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Ethics

Animal experimentation: Ethics statementAll animal experiments described in the present study were conducted at the University Montpellier 2 according to European Union guidelines for handling of laboratory animals (http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm) and were approved by the Direction Sanitaire et Vétérinaire de l'Hérault and Comité d'Ethique pour l'Expérimentation Animale under reference CEEA-LR-13007.

Version history

  1. Received: March 3, 2015
  2. Accepted: July 7, 2015
  3. Accepted Manuscript published: July 8, 2015 (version 1)
  4. Version of Record published: August 3, 2015 (version 2)

Copyright

© 2015, Nguyen Chi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,274
    views
  • 1,832
    downloads
  • 215
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mai Nguyen Chi
  2. Béryl Laplace-Builhe
  3. Jana Travnickova
  4. Patricia Luz-Crawford
  5. Gautier Tejedor
  6. Quang Tien Phan
  7. Isabelle Duroux-Richard
  8. Jean-Pierre Levraud
  9. Karima Kissa
  10. Georges Lutfalla
  11. Christian Jorgensen
  12. Farida Djouad
(2015)
Identification of polarized macrophage subsets in zebrafish
eLife 4:e07288.
https://doi.org/10.7554/eLife.07288

Share this article

https://doi.org/10.7554/eLife.07288

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.