Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

  1. Carmela Sidrauski  Is a corresponding author
  2. Jordan C Tsai
  3. Martin Kampmann
  4. Brian R Hearn
  5. Punitha Vedantham
  6. Priyadarshini Jaishankar
  7. Masaaki Sokabe
  8. Aaron S Mendez
  9. Billy W Newton
  10. Edward L Tang
  11. Erik Verschueren
  12. Jeffrey R Johnson
  13. Nevan J Krogan
  14. Christopher S Fraser
  15. Jonathan S Weissman
  16. Adam R Renslo
  17. Peter Walter
  1. University of California, San Francisco, United States
  2. Howard Hughes Medical Institution, University of California, San Francisco, United States
  3. University of California, Davis, United States

Abstract

The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.

Article and author information

Author details

  1. Carmela Sidrauski

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    carmelas@me.com
    Competing interests
    CS: Inventors on UC patent application PCT/US2014/029568. Title: Modulators of the eIF2a pathway.
  2. Jordan C Tsai

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5202-722X
  3. Martin Kampmann

    Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3819-7019
  4. Brian R Hearn

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    BRH: Inventors on UC patent application PCT/US2014/029568. Title: Modulators of the eIF2a pathway.
  5. Punitha Vedantham

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    PV: Inventors on UC patent application PCT/US2014/029568. Title: Modulators of the eIF2a pathway.
  6. Priyadarshini Jaishankar

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Masaaki Sokabe

    Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  8. Aaron S Mendez

    Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Billy W Newton

    QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Edward L Tang

    QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Erik Verschueren

    QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5842-6344
  12. Jeffrey R Johnson

    QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  13. Nevan J Krogan

    QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Christopher S Fraser

    Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  15. Jonathan S Weissman

    Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  16. Adam R Renslo

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    ARR: Inventors on UC patent application PCT/US2014/029568. Title: Modulators of the eIF2a pathway.
  17. Peter Walter

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    PW: Inventors on UC patent application PCT/US2014/029568. Title: Modulators of the eIF2a pathway.

Funding

Howard Hughes Medical Institute (HHMI)

  • Carmela Sidrauski
  • Jordan C Tsai
  • Martin Kampmann
  • Aaron S Mendez
  • Jonathan S Weissman
  • Peter Walter

The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffery W Kelly, Scripps Research Institute, United States

Version history

  1. Received: March 4, 2015
  2. Accepted: April 13, 2015
  3. Accepted Manuscript published: April 15, 2015 (version 1)
  4. Version of Record published: May 11, 2015 (version 2)

Copyright

© 2015, Sidrauski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,073
    views
  • 2,039
    downloads
  • 206
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmela Sidrauski
  2. Jordan C Tsai
  3. Martin Kampmann
  4. Brian R Hearn
  5. Punitha Vedantham
  6. Priyadarshini Jaishankar
  7. Masaaki Sokabe
  8. Aaron S Mendez
  9. Billy W Newton
  10. Edward L Tang
  11. Erik Verschueren
  12. Jeffrey R Johnson
  13. Nevan J Krogan
  14. Christopher S Fraser
  15. Jonathan S Weissman
  16. Adam R Renslo
  17. Peter Walter
(2015)
Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response
eLife 4:e07314.
https://doi.org/10.7554/eLife.07314

Share this article

https://doi.org/10.7554/eLife.07314

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.