Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone  Is a corresponding author
  1. University of Bergen, Norway
  2. Academia Sinica, Taiwan
  3. Stazione Zoologica Anton Dohrn, Italy

Abstract

Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naïve mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. Here, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A FGF signalling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs.

Article and author information

Author details

  1. Carmen Andrikou

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  2. Chih-Yu Pai

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi-Hsien Su

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Ina Arnone

    Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
    For correspondence
    miarnone@szn.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Margaret Buckingham, Institut Pasteur, France

Version history

  1. Received: March 5, 2015
  2. Accepted: July 25, 2015
  3. Accepted Manuscript published: July 28, 2015 (version 1)
  4. Version of Record published: August 26, 2015 (version 2)

Copyright

© 2015, Andrikou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 341
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carmen Andrikou
  2. Chih-Yu Pai
  3. Yi-Hsien Su
  4. Maria Ina Arnone
(2015)
Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm
eLife 4:e07343.
https://doi.org/10.7554/eLife.07343

Share this article

https://doi.org/10.7554/eLife.07343

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.