Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. IFA Tulln, Austria
  3. University of Veterinary Medicine, Austria
  4. University of Veterinary Medicine Vienna, Austria
  5. University of Oxford, United Kingdom

Abstract

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck.

Article and author information

Author details

  1. Iain G Johnston

    Department of Mathematics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Joerg P Burgstaller

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Vitezslav Havlicek

    Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Kolbe

    Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Rülicke

    Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Gottfried Brem

    Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, Tulln, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Jo Poulton

    Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick S Jones

    Department of Mathematics, Imperial College London, London, United Kingdom
    For correspondence
    nick.jones@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jodi Nunnari, University of California, Davis, United States

Ethics

Animal experimentation: The study was discussed and approved by the institutional ethics committee in accordance with Good Scientific Practice (GSP) guidelines and national legislation. FELASA recommendations for the health monitoring of SPF mice were followed. Approved by the institutional ethics committee and the national authority according to Section 26 of the Law for Animal Experiments, Tierversuchsgesetz 2012 - TVG 2012.

Version history

  1. Received: March 13, 2015
  2. Accepted: May 29, 2015
  3. Accepted Manuscript published: June 2, 2015 (version 1)
  4. Accepted Manuscript updated: June 4, 2015 (version 2)
  5. Version of Record published: July 1, 2015 (version 3)

Copyright

© 2015, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,018
    views
  • 659
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iain G Johnston
  2. Joerg P Burgstaller
  3. Vitezslav Havlicek
  4. Thomas Kolbe
  5. Thomas Rülicke
  6. Gottfried Brem
  7. Jo Poulton
  8. Nick S Jones
(2015)
Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism
eLife 4:e07464.
https://doi.org/10.7554/eLife.07464

Share this article

https://doi.org/10.7554/eLife.07464

Further reading

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.