A native interactor scaffolds and stabilizes toxic Ataxin-1 oligomers in SCA1

  1. Cristian A Lasagna-Reeves
  2. Maxime W C Rousseaux
  3. Marcos J Guerrero-Munoz
  4. Jeehye Park
  5. Paymaan Jafar-Nejad
  6. Ronald Richman
  7. Nan Lu
  8. Urmi Sengupta
  9. Alexandra Litvinchuk
  10. Harry T Orr
  11. Rakez Kayed
  12. Huda Y Zoghbi  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. University of Texas Medical Branch, United States
  3. Howard Hughes Medical Institute, Baylor College of Medicine, United States
  4. University of Minnesota, United States

Abstract

Recent studies indicate that soluble oligomers drive pathogenesis in several neurodegenerative proteinopathies, including Alzheimer and Parkinson disease. Curiously, the same conformational antibody recognizes different disease-related oligomers, despite the variations in clinical presentation and brain regions affected, suggesting that the oligomer structure might be responsible for toxicity. We investigated whether polyglutamine-expanded Ataxin1, the protein that underlies spinocerebellar ataxia type 1, forms toxic oligomers and, if so, what underlies their toxicity. We found that mutant ATXN1 does form oligomers and that oligomer levels correlate with disease progression in the Atxn1154Q/+ mice. Moreover, oligomeric toxicity, stabilization and seeding require interaction with Capicua, which is expressed at greater ratios with respect to ATXN1 in the cerebellum than in less vulnerable brain regions. Thus, specific interactors, not merely oligomeric structure, drive pathogenesis and contribute to regional vulnerability. Identifying interactors that stabilize toxic oligomeric complexes could answer longstanding questions about the pathogenesis of other proteinopathies.

Article and author information

Author details

  1. Cristian A Lasagna-Reeves

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Maxime W C Rousseaux

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  3. Marcos J Guerrero-Munoz

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    No competing interests declared.
  4. Jeehye Park

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Paymaan Jafar-Nejad

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Ronald Richman

    Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  7. Nan Lu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Urmi Sengupta

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    No competing interests declared.
  9. Alexandra Litvinchuk

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Harry T Orr

    Institute for Translational Neuroscience, University of Minnesota, Minnesota, United States
    Competing interests
    No competing interests declared.
  11. Rakez Kayed

    Department of Neurology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    No competing interests declared.
  12. Huda Y Zoghbi

    Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLife.

Reviewing Editor

  1. Bart De Strooper, VIB Center for the Biology of Disease, KU Leuven, Belgium

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AN-1013) of Baylor College of Medicine

Version history

  1. Received: March 18, 2015
  2. Accepted: May 18, 2015
  3. Accepted Manuscript published: May 19, 2015 (version 1)
  4. Version of Record published: June 11, 2015 (version 2)

Copyright

© 2015, Lasagna-Reeves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,364
    views
  • 728
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristian A Lasagna-Reeves
  2. Maxime W C Rousseaux
  3. Marcos J Guerrero-Munoz
  4. Jeehye Park
  5. Paymaan Jafar-Nejad
  6. Ronald Richman
  7. Nan Lu
  8. Urmi Sengupta
  9. Alexandra Litvinchuk
  10. Harry T Orr
  11. Rakez Kayed
  12. Huda Y Zoghbi
(2015)
A native interactor scaffolds and stabilizes toxic Ataxin-1 oligomers in SCA1
eLife 4:e07558.
https://doi.org/10.7554/eLife.07558

Share this article

https://doi.org/10.7554/eLife.07558

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.