Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography

Abstract

Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.

Article and author information

Author details

  1. Daniel A Keedy

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Lillian R Kenner

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Matthew Warkentin

    Physics Department, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Rahel A Woldeyes

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Jesse B Hopkins

    Physics Department, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  6. Michael C Thompson

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Aaron S Brewster

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Andrew H Van Benschoten

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Elizabeth L Baxter

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  10. Monarin Uervirojnangkoorn

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  11. Scott E McPhillips

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  12. Jinhu Song

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  13. Roberto Alonso-Mori

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  14. James M Holton

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  15. William I Weis

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  16. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
  17. S Michael Soltis

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  18. Henrik Lemke

    Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  19. Ana Gonzalez

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  20. Nicholas K Sauter

    Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
    Competing interests
    No competing interests declared.
  21. Aina E Cohen

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  22. Henry van den Bedem

    Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States
    Competing interests
    No competing interests declared.
  23. Robert E Thorne

    Physics Department, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  24. James S Fraser

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    For correspondence
    jfraser@fraserlab.com
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Stephen C Harrison, Harvard Medical School, United States

Version history

  1. Received: March 19, 2015
  2. Accepted: September 29, 2015
  3. Accepted Manuscript published: September 30, 2015 (version 1)
  4. Version of Record published: December 23, 2015 (version 2)

Copyright

© 2015, Keedy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,382
    views
  • 1,063
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel A Keedy
  2. Lillian R Kenner
  3. Matthew Warkentin
  4. Rahel A Woldeyes
  5. Jesse B Hopkins
  6. Michael C Thompson
  7. Aaron S Brewster
  8. Andrew H Van Benschoten
  9. Elizabeth L Baxter
  10. Monarin Uervirojnangkoorn
  11. Scott E McPhillips
  12. Jinhu Song
  13. Roberto Alonso-Mori
  14. James M Holton
  15. William I Weis
  16. Axel T Brunger
  17. S Michael Soltis
  18. Henrik Lemke
  19. Ana Gonzalez
  20. Nicholas K Sauter
  21. Aina E Cohen
  22. Henry van den Bedem
  23. Robert E Thorne
  24. James S Fraser
(2015)
Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography
eLife 4:e07574.
https://doi.org/10.7554/eLife.07574

Share this article

https://doi.org/10.7554/eLife.07574

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.