Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

  1. Alexandre Chojnowski
  2. Peh Fern Ong
  3. Esther SM Wong
  4. John SY Lim
  5. Rafidah A Mutalif
  6. Raju Navasankari
  7. Bamaprasad Dutta
  8. Henry Yang
  9. Yi Y Liow
  10. Siu K Sze
  11. Thomas Boudier
  12. Graham D Wright
  13. Alan Colman
  14. Brian Burke
  15. Colin L Stewart
  16. Oliver Dreesen  Is a corresponding author
  1. Institute of Medical Biology, Singapore
  2. Nanyang Technological University, Singapore
  3. National University of Singapore, Singapore
  4. IPAL UMI 2955, Singapore

Abstract

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.

Article and author information

Author details

  1. Alexandre Chojnowski

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Peh Fern Ong

    Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther SM Wong

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. John SY Lim

    Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafidah A Mutalif

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Raju Navasankari

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Bamaprasad Dutta

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Henry Yang

    Bioinformatics Core, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Y Liow

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Siu K Sze

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Boudier

    Bioinformatics Institute, IPAL UMI 2955, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  12. Graham D Wright

    Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  13. Alan Colman

    Stem Cell Disease Models, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  14. Brian Burke

    Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  15. Colin L Stewart

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  16. Oliver Dreesen

    Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
    For correspondence
    oliver.dreesen@imb.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karsten Weis, ETH Zürich, Switzerland

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (140960) of the Institute of Medical Biology, A*STAR, Singapore.

Version history

  1. Received: March 27, 2015
  2. Accepted: August 23, 2015
  3. Accepted Manuscript published: August 27, 2015 (version 1)
  4. Version of Record published: September 11, 2015 (version 2)

Copyright

© 2015, Chojnowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,449
    views
  • 1,191
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Chojnowski
  2. Peh Fern Ong
  3. Esther SM Wong
  4. John SY Lim
  5. Rafidah A Mutalif
  6. Raju Navasankari
  7. Bamaprasad Dutta
  8. Henry Yang
  9. Yi Y Liow
  10. Siu K Sze
  11. Thomas Boudier
  12. Graham D Wright
  13. Alan Colman
  14. Brian Burke
  15. Colin L Stewart
  16. Oliver Dreesen
(2015)
Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria
eLife 4:e07759.
https://doi.org/10.7554/eLife.07759

Share this article

https://doi.org/10.7554/eLife.07759

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.