Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis

  1. Jasmine C Wong
  2. Kelley M Weinfurtner
  3. Maria del pilar Alzamora
  4. Scott C Kogan
  5. Michael R Burgess
  6. Yan Zhang
  7. Joy Nakitandwe
  8. Jing Ma
  9. Jinjun Cheng
  10. Shann-Ching Chen
  11. Theodore T Ho
  12. Johanna Flach
  13. Damien Reynaud
  14. Emmanuelle Passegué
  15. James R Downing
  16. Kevin Shannon  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Celgene Corporation, United States
  3. Chinese Academy of Sciences, China
  4. St. Jude Children's Research Hospital, United States
  5. Thermo Fisher Scientific, United States
  6. Institute of Experimental Cancer Research, Germany
  7. Cincinnati Children's Hospital Medical Center, United States

Abstract

Chromosome 7 deletions are highly prevalent in myelodysplastic syndrome (MDS), and likely contribute to aberrant growth through haploinsufficiency. We generated mice with a heterozygous germline deletion of a 2 Mb interval of chromosome band 5A3 syntenic to a commonly deleted segment of human 7q22, and show that mutant hematopoietic cells exhibit cardinal features of MDS. Specifically, the long-term hematopoietic stem cell (HSC) compartment is expanded in 5A3+/del mice, and the distribution of myeloid progenitors (MP) is altered. 5A3+/del HSCs are defective for lymphoid repopulating potential and show a myeloid lineage output bias. These cell autonomous abnormalities are exacerbated by physiologic aging and upon serial transplantation. The 5A3 deletion partially rescues defective repopulation in Gata2 mutant mice. 5A3+/del hematopoietic cells exhibit decreased expression of oxidative phosphorylation genes, increased levels of reactive oxygen species, and perturbed oxygen consumption. These studies provide the first functional data linking 7q22 deletions to MDS pathogenesis.

Article and author information

Author details

  1. Jasmine C Wong

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kelley M Weinfurtner

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria del pilar Alzamora

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott C Kogan

    Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael R Burgess

    Celgene Corporation, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yan Zhang

    Unit of Hematopoietic Stem Cell and Transgenic Animal Models, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Joy Nakitandwe

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jing Ma

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jinjun Cheng

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shann-Ching Chen

    Thermo Fisher Scientific, South San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Theodore T Ho

    Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Johanna Flach

    Comprehensive Cancer Center, Institute of Experimental Cancer Research, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Damien Reynaud

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Emmanuelle Passegué

    Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. James R Downing

    Department of Pathology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kevin Shannon

    Department of Pediatrics, University of California, San Francisco, San Francisco, United States
    For correspondence
    ShannonK@peds.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chi Van Dang, University of Pennsylvania, United States

Ethics

Animal experimentation: Study mice were housed in a specific pathogen-free facility at the University of California San Francisco, and all animal experiments were conducted in strict accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, San Francisco (Approval number: AN091877-03).

Version history

  1. Received: March 31, 2015
  2. Accepted: July 17, 2015
  3. Accepted Manuscript published: July 20, 2015 (version 1)
  4. Version of Record published: September 15, 2015 (version 2)

Copyright

© 2015, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,943
    views
  • 378
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasmine C Wong
  2. Kelley M Weinfurtner
  3. Maria del pilar Alzamora
  4. Scott C Kogan
  5. Michael R Burgess
  6. Yan Zhang
  7. Joy Nakitandwe
  8. Jing Ma
  9. Jinjun Cheng
  10. Shann-Ching Chen
  11. Theodore T Ho
  12. Johanna Flach
  13. Damien Reynaud
  14. Emmanuelle Passegué
  15. James R Downing
  16. Kevin Shannon
(2015)
Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis
eLife 4:e07839.
https://doi.org/10.7554/eLife.07839

Share this article

https://doi.org/10.7554/eLife.07839

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.