Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase

  1. Niels Bradshaw
  2. Richard Losick  Is a corresponding author
  1. Harvard University, United States

Abstract

Formation of a division septum near a randomly chosen pole during sporulation in B. subtilis creates unequal sized daughter cells with dissimilar programs of gene expression. An unanswered question is how polar septation activates a transcription factor (σF) selectively in the small cell. We present evidence that the upstream regulator of σF, the phosphatase SpoIIE, is compartmentalized in the small cell by transfer from the polar septum to the adjacent cell pole where SpoIIE is protected from proteolysis and activated. Polar recognition, protection from proteolysis, and stimulation of phosphatase activity are linked to oligomerization of SpoIIE. This mechanism for initiating cell-specific gene expression is independent of additional sporulation proteins; vegetative cells engineered to divide near a pole sequester SpoIIE and activate σF in small cells. Thus, a simple model explains how SpoIIE responds to a stochastically-generated cue to activate σF at the right time and in the right place.

Article and author information

Author details

  1. Niels Bradshaw

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Richard Losick

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    losick@mcb.harvard.edu
    Competing interests
    Richard Losick, eLife senior editor.

Reviewing Editor

  1. Michael Laub, Massachusetts Institute of Technology, United States

Version history

  1. Received: April 16, 2015
  2. Accepted: October 13, 2015
  3. Accepted Manuscript published: October 14, 2015 (version 1)
  4. Version of Record published: December 17, 2015 (version 2)
  5. Version of Record updated: April 25, 2017 (version 3)

Copyright

© 2015, Bradshaw & Losick

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,792
    views
  • 559
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Niels Bradshaw
  2. Richard Losick
(2015)
Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase
eLife 4:e08145.
https://doi.org/10.7554/eLife.08145

Share this article

https://doi.org/10.7554/eLife.08145

Further reading

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.