Abstract

Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes.

Article and author information

Author details

  1. Fabian Blombach

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Enrico Salvadori

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Fouqueau

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Yan

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia Reimann

    Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Carol Sheppard

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Katherine L Smollett

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Sonja V Albers

    Molecular Biology of Archaea Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher WM Kay

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Konstantinos Thalassinos

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Finn Werner

    Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
    For correspondence
    f.werner@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Patrick Cramer, Max Planck Institute for Biophysical Chemistry, Germany

Version history

  1. Received: April 28, 2015
  2. Accepted: June 11, 2015
  3. Accepted Manuscript published: June 12, 2015 (version 1)
  4. Version of Record published: July 8, 2015 (version 2)

Copyright

© 2015, Blombach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,746
    views
  • 331
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Blombach
  2. Enrico Salvadori
  3. Thomas Fouqueau
  4. Jun Yan
  5. Julia Reimann
  6. Carol Sheppard
  7. Katherine L Smollett
  8. Sonja V Albers
  9. Christopher WM Kay
  10. Konstantinos Thalassinos
  11. Finn Werner
(2015)
Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39
eLife 4:e08378.
https://doi.org/10.7554/eLife.08378

Share this article

https://doi.org/10.7554/eLife.08378

Further reading

    1. Biochemistry and Chemical Biology
    Zheng Ruan, Junuk Lee ... Wei Lü
    Research Article

    Protein phosphorylation is one of the major molecular mechanisms regulating protein activity and function throughout the cell. Pannexin 1 (PANX1) is a large-pore channel permeable to ATP and other cellular metabolites. Its tyrosine phosphorylation and subsequent activation have been found to play critical roles in diverse cellular conditions, including neuronal cell death, acute inflammation, and smooth muscle contraction. Specifically, the non-receptor kinase Src has been reported to phosphorylate Tyr198 and Tyr308 of mouse PANX1 (equivalent to Tyr199 and Tyr309 of human PANX1), resulting in channel opening and ATP release. Although the Src-dependent PANX1 activation mechanism has been widely discussed in the literature, independent validation of the tyrosine phosphorylation of PANX1 has been lacking. Here, we show that commercially available antibodies against the two phosphorylation sites mentioned above—which were used to identify endogenous PANX1 phosphorylation at these two sites—are nonspecific and should not be used to interpret results related to PANX1 phosphorylation. We further provide evidence that neither tyrosine residue is a major phosphorylation site for Src kinase in heterologous expression systems. We call on the field to re-examine the existing paradigm of tyrosine phosphorylation-dependent activation of the PANX1 channel.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.