Promoter nucleosome dynamics regulated by signaling through the CTD code

  1. Philippe Materne
  2. Jayamani Anandhakumar
  3. Valerie Migeot
  4. Ignacio Soriano
  5. Carlo Yague-Sanz
  6. Elena Hidalgo
  7. Carole Mignion
  8. Luis Quintales
  9. Francisco Antequera
  10. Damien Hermand  Is a corresponding author
  1. University of Namur, Belgium
  2. LSU Health Sciences Center, United States
  3. Universidad de Salamanca, Spain
  4. Universitat Pompeu Fabra, Spain

Abstract

The phosphorylation of the RNA polymerase II CTD plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phosphoS2 CTD nearby the promoter impairs the phosphoS5 CTD dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phosphoS2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signaling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signaling through the CTD code regulates promoter nucleosomes dynamics.

Article and author information

Author details

  1. Philippe Materne

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Jayamani Anandhakumar

    Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valerie Migeot

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Ignacio Soriano

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Carlo Yague-Sanz

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena Hidalgo

    Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Carole Mignion

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Luis Quintales

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Francisco Antequera

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Damien Hermand

    Namur Research College, University of Namur, Namur, Belgium
    For correspondence
    Damien.Hermand@unamur.be
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Danny Reinberg, Howard Hughes Medical Institute, New York University School of Medicine, United States

Version history

  1. Received: May 26, 2015
  2. Accepted: June 19, 2015
  3. Accepted Manuscript published: June 22, 2015 (version 1)
  4. Version of Record published: July 15, 2015 (version 2)

Copyright

© 2015, Materne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,678
    views
  • 639
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe Materne
  2. Jayamani Anandhakumar
  3. Valerie Migeot
  4. Ignacio Soriano
  5. Carlo Yague-Sanz
  6. Elena Hidalgo
  7. Carole Mignion
  8. Luis Quintales
  9. Francisco Antequera
  10. Damien Hermand
(2015)
Promoter nucleosome dynamics regulated by signaling through the CTD code
eLife 4:e09008.
https://doi.org/10.7554/eLife.09008

Share this article

https://doi.org/10.7554/eLife.09008

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.